浙江电力

2022, v.41;No.314(06) 1-7

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于多强化学习智能体架构的电网运行方式调节方法
An Operating Condition Adjustment Method for Power Grid Using Multi-DRL-Agent Architecture

叶琳,项中明,张静,徐建平,吕勤,尚秀敏,杨靖萍,刁瑞盛
YE Lin,XIANG Zhongming,ZHANG Jing,XU Jianping,LYU Qin,SHANG Xiumin,YANG Jingping,DIAO Ruisheng

摘要(Abstract):

随着新型电力系统规划与调控中的复杂性、动态性和不确定性持续增大,制定满足多种安全和经济约束的电网运行方式面临诸多挑战。该过程通常需要大量的人工调整和仿真计算,在高维动作空间中搜索满足电网在基态和故障工况下安全和经济要求的可行解。为此,提出一种基于多强化学习智能体架构的方法,将该问题描述为马尔可夫决策过程,通过训练集中式和分布式的强化学习智能体,自动调整不同类型的电网可控资源,从而控制电网传输线路功率,满足多种电网运行安全指标。该方法的有效性在某实际电网模型中得到了验证。
As the planning and dispatching of new types of power systems become increasingly complicated,dynamic and dubious,it is very challenging to lay down operating mode for power grid that satisfies both security and economic constraints. This process typically requires intensive manual tuning and simulation calculations to search for feasible solutions in a high-dimensional action space that fulfills the requirements on safety and economy of the grid in ground state and fault conditions. Therefore,an approach based on multi-DRL-agent architecture is proposed to describe the problem as a Markov decision process(MDP). The approach automatically adjusts different types of controllable grid resources by training centralized and distributed multi-DRL-agent to control the power of transmission lines,thus complying with various safety indicators of grid operation. The method is proved to be effective in a power grid model.

关键词(KeyWords): 人工智能;电网调度与控制;深度强化学习;多智能体
artificial intelligence;grid dispatch and control;deep reinforcement learning;multi-agent

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211JH1900M4)

作者(Author): 叶琳,项中明,张静,徐建平,吕勤,尚秀敏,杨靖萍,刁瑞盛
YE Lin,XIANG Zhongming,ZHANG Jing,XU Jianping,LYU Qin,SHANG Xiumin,YANG Jingping,DIAO Ruisheng

DOI: 10.19585/j.zjdl.202206001

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享