锂电池储能系统的并网功率控制与SOC均衡策略Grid connection power control and the SOC balancing strategy for lithium battery energy storage systems
朱一昕,黎莞伟,吴昊,马鑫,许德智
ZHU Yixin,LI Guanwei,WU Hao,MA Xin,XU Dezhi
摘要(Abstract):
新一代锂电池储能系统中,电池模组级联模块化功率变换器组成电池功率模块,各模块输出串联后并入直流电网。充电模式下,各模块控制器独立进行电流控制会导致电流不稳定、母线侧电压发散。为解决这一问题,结合并联型下垂思想,提出串联型I-P下垂控制,实现功率稳定分配;参考传统比例均衡策略,提出一种基于I-P下垂控制的比例均衡策略;为提高均衡速度,分析电池功率模块工作点,优化设计分压系数,提出一种改进均衡策略,可实现功率控制和均衡控制解耦。最后,搭建含6个电池模组的级联模块化系统进行仿真分析。结果表明:所提串联型下垂控制可实现功率稳定分配,加入均衡策略后可实现功率稳定和SOC(荷电状态)均衡;在相同均衡指标下,所提改进均衡策略较比例均衡策略的均衡耗时大幅缩短。
In the new generation of lithium battery energy storage systems, battery modules are cascaded into modular power converters to form battery power modules, which then output in series to integrate into a DC grid. In charging mode, independent current control by each module controller can lead to unstable currents and diverging busside voltages. To solve this problem, the paper proposes a series-type I-P droop control strategy that incorporates the parallel droop concept to achieve stable power distribution. Additionally, it introduces a proportional balancing strategy based on I-P droop control, inspired by traditional proportional balancing methods. To enhance the balancing speed, the paper analyzes the operating points of the battery power modules and optimizes the design of the voltage division coefficient, proposing an improved balancing strategy that decouples power control from balancing control.Finally, the paper conducts a simulation analysis of a cascaded modular system consisting of six battery modules.The results demonstrate that the proposed series-type droop control can achieve stable power distribution, and with the inclusion of the balancing strategy, both stable power and state of charge(SOC) balancing can be achieved. Under the same balancing metrics, the improved balancing strategy significantly reduces the balancing time compared to the proportional balancing strategy.
关键词(KeyWords):
电池模组;荷电状态;下垂控制;功率分配;均衡策略
battery module;state of charge;droop control;power distribution;balancing strategy
基金项目(Foundation): 国家自然科学基金优秀青年科学基金资助项目(62222307)
作者(Author):
朱一昕,黎莞伟,吴昊,马鑫,许德智
ZHU Yixin,LI Guanwei,WU Hao,MA Xin,XU Dezhi
DOI: 10.19585/j.zjdl.202503010
参考文献(References):
- [1]刘剑,丁天祥,杜涛,等.计及储能电池寿命的工业园区经济调度模型[J].电网与清洁能源,2024,40(5):105-112.LIU Jian,DING Tianxiang,DU Tao,et al.The economical dispatch model for industrial parks considering the lifetime of energy storage batteries[J]. Power System and Clean Energy,2024,40(5):105-112.
- [2]李盈,赵伟,赵立宁,等.基于电池储能SOC的调峰、调频混合控制策略[J].高压电器,2023,59(7):48-55.LI Ying,ZHAO Wei,ZHAO Lining,et al.Mixed control strategy of peak regulation and frequency modulation based on SOC of battery energy storage[J].High Voltage Apparatus,2023,59(7):48-55.
- [3]王俊月,杨騉,宋政湘,等.基于自适应SOC的电池-飞轮混合储能一次调频控制策略[J].电力工程技术,2024,43(5):122-130.WANG Junyue,YANG Kun,SONG Zhengxiang,et al.Primary frequency regulation strategy for battery-flywheel hybrid energy storage based on adaptive state of charge[J].Electric Power Engineering Technology,2024,43(5):122-130.
- [4]王育飞,张新宇,张文韬,等.考虑调频死区的电池储能系统自适应频率控制策略[J].智慧电力,2024,52(8):33-41.WANG Yufei,ZHANG Xinyu,ZHANG Wentao,et al.Adaptive frequency control strategy of battery energy storage system considering frequency regulation dead band[J].Smart Power,2024,52(8):33-41.
- [5]朱晓荣,韩啸.储能电池与常规机组配合参与一次调频的自适应控制策略[J].电测与仪表,2023,60(9):34-42.ZHU Xiaorong,HAN Xiao.The adaptive control strategy of energy storage battery cooperating with conventional generating units to participate in primary frequency regulation[J].Electrical Measurement&Instrumentation,2023,60(9):34-42.
- [6] CHAUHAN P J,REDDY B D,BHANDARI S,et al.Battery energy storage for seamless transitions of wind generator in standalone microgrid[J].IEEE Transactions on Industry Applications,2019,55(1):69-77.
- [7] RALLABANDI V,AKEYO O M,JEWELL N,et al.Incorporating battery energy storage systems into multi-MW grid connected PV systems[J].IEEE Transactions on Industry Applications,2019,55(1):638-647.
- [8] BAKO Z N,TANKARI M A,LEFEBVRE G,et al.Experiment-based methodology of kinetic battery modeling for energy storage[J].IEEE Transactions on Industry Applications,2019,55(1):593-599.
- [9] BAZARGAN D,FILIZADEH S,GOLE A. Stability analysis of converter-connected battery energy storage systems in the grid[C]//2015 IEEE Power&Energy Society General Meeting.July 26-30,2015.Denver,CO,USA:IEEE,2015.
- [10]郭向伟,王晨,钱伟,等.电池储能系统均衡方法研究综述[J].电工技术学报,2024,39(13):4204-4225.GUO Xiangwei,WANG Chen,QIAN Wei,et al. A review of equalization methods for battery energy storage system[J]. Transactions of China Electrotechnical Society,2024,39(13):4204-4225.
- [11]赵珈卉,田立亭,程林.锂离子电池状态估计与剩余寿命预测方法综述[J].发电技术,2023,44(1):1-17.ZHAO Jiahui,TIAN Liting,CHENG Lin. Review on state estimation and remaining useful life prediction methods for lithium-ion battery[J].Power Generation Technology,2023,44(1):1-17.
- [12]张志行,韩雪冰,冯旭宁,等.面向不同电流工况的锂离子电池改进EECM研究[J].电力工程技术,2023,42(4):2-12.ZHANG Zhihang,HAN Xuebing,FENG Xuning,et al.Improved EECM for lithium-ion batteries under different current conditions[J]. Electric Power Engineering Technology,2023,42(4):2-12.
- [13]尚彦赟,宋红为,杨照光,等.基于二阶RC模型的锂电池充放电特性分析[J].高压电器,2023,59(7):87-94.SHANG Yanyun,SONG Hongwei,YANG Zhaoguang,et al. Charge and discharge characteristics analysis of lithium battery based on second-order RC model[J].High Voltage Apparatus,2023,59(7):87-94.
- [14]翟苏巍,李文云,周成,等.基于改进概率神经网络的储能电池荷电状态估计[J].智慧电力,2024,52(2):94-100.ZHAI Suwei,LI Wenyun,ZHOU Cheng,et al.State-ofcharge estimation of energy storage batteries based on modified probabilistic neural networks[J]. Smart Power,2024,52(2):94-100.
- [15] HUANG W X,ABU QAHOUQ J A.Energy sharing control scheme for state-of-charge balancing of distributed battery energy storage system[J].IEEE Transactions on Industrial Electronics,2015,62(5):2764-2776.
- [16] CAO Y,ABU QAHOUQ J A.Hierarchical SOC balancing controller for battery energy storage system[J].IEEE Transactions on Industrial Electronics,2021,68(10):9386-9397.
- [17] LI Y,HAN Y H.A module-integrated distributed battery energy storage and management system[J].IEEE Transactions on Power Electronics,2016:1.
- [18] YILDIRIM B,ALI ELGENDY M A,SMITH A N,et al.Efficiency optimized power-sharing algorithm for modular battery energy storage systems[J].IEEE Transactions on Industrial Electronics,2023,70(11):11299-11309.
- [19] CHOWDHURY S M,BADAWY M O,SOZER Y,et al.A novel battery management system using the duality of the adaptive droop control theory[J]. IEEE Transactions on Industry Applications,2019,55(5):5078-5088.
- [20] CHOWDHURY S,SHAHEED M N B,SOZER Y.Stateof-charge balancing control for modular battery system with output DC bus regulation[J].IEEE Transactions on Transportation Electrification,2021,7(4):2181-2193.
- [21] ZHANG Q J,QU T D,LIU Y C,et al.An improved SoC balancing strategy for battery energy storage system in allelectric propulsion ships current sharing effect[J].Journal of Electrical Engineering&Technology,2023,18(3):2061-2074.
- [22] TIAN X N,WANG Y B,WANG F,et al. An adaptive nonlinear droop control for accurate load current sharing and DC bus voltage compensation in a DC power system[J].Journal of Power Electronics,2022:308-317.
- [23] KAMEL M,SANKARANARAYANAN V,ZANE R G,et al. State-of-charge control with series output connected DC-DC modules in active battery management systems[C]//2020 IEEE Applied Power Electronics Conference and Exposition(APEC). March 15-19,2020. New Orleans,LA,USA:IEEE,2020.
- [24] KAMEL M,ZANE R A,MAKSIMOVIC D. Voltage sharing with series output connected battery modules in a plug-and-play DC microgrid[J]. IEEE Transactions on Power Electronics,2021,36(11):13118-13127.