浙江电力

2022, v.41;No.311(03) 87-92

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于LDSAD的电力监控系统网络流量异常检测
Network Traffic Anomaly Detection of Power Monitoring System Based on LDSAD

刘栋,蒋正威,朱英伟,黄银强,肖艳炜
LIU Dong,JIANG Zhengwei,ZHU Yingwei,HUANG Yinqiang,XIAO Yanwei

摘要(Abstract):

随着智能电网的不断发展,电力系统网络安全问题日益凸显。为充分利用电网海量数据资源,提高大数据利用率,需要在流量数据中挖掘异常,加强电网抵抗网络安全风险的能力。利用深度学习的特点,对电网的电力监控系统网络流量进行快速检测,以保障电力系统数据采集和存储的安全。采用LSTM(长短期记忆)深度学习网络作为特征提取器,以解决数据特征提取困难的问题,提出了基于改进SVM(支持向量机)嵌入决策树模型的流量异常检测方法。从数据测试实验结果可知,该方法具有较高的准确率,优于多种传统方法。
With the continuous development of smart grid,network security of power system becomes increasingly prominent. In order to make full use of the massive data of power grid and improve the utilization rate of big data,it is required to mine the anomalies in massive traffic data to safeguard power grid by fending off network security risks. This paper,in the light of the characteristics of deep learning to quickly detect the network traffic of the power monitoring platform of the power grid,ensures the security of data acquisition and storage of the power system;besides,it uses LSTM(long short-term memory)deep learning network as the feature extractor to resolve the difficulty of data feature extraction;finally,the paper proposes a network traffic anomaly detection method based on decision tree model with SVM(support vector machine)embedded. It is concluded from the experimental results of data testing that the method is of high accuracy and superior to many traditional methods.

关键词(KeyWords): 深度学习;特征提取;支持向量机;流量检测;网络安全
deep learning;feature extraction;support vector machine;traffic detection;network security

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211JH1900M2)

作者(Author): 刘栋,蒋正威,朱英伟,黄银强,肖艳炜
LIU Dong,JIANG Zhengwei,ZHU Yingwei,HUANG Yinqiang,XIAO Yanwei

DOI: 10.19585/j.zjdl.202203011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享