微电网边缘智能控制综述及展望A review and outlook on edge intelligent control for microgrids
许梓荣,刘友波,廖红兵,唐志远,高红均,刘俊勇
XU Zirong,LIU Youbo,LIAO Hongbing,TANG Zhiyuan,GAO Hongjun,LIU Junyong
摘要(Abstract):
随着新型电力系统对分布式能源高比例消纳与灵活调控需求的提升,微电网作为关键组成单元面临新的运行控制挑战。传统集中式云计算架构难以满足微电网实时决策、隐私保护和分布式协同等需求,而边缘智能技术为解决这些问题提供了新型技术范式。首先概述了边缘智能在微电网运行控制中的技术体系;其次从能源管理、稳定调控、能量交易与源荷预测应用场景切入,对比分析了边缘智能相较于传统方法的优势;最后对其通信模式优化、安全防护机制、算法泛化能力、云边协同架构及标准化落地等方面进行了展望。
With the increasing demand of modern power systems for high-proportion integration and flexible regulation of distributed energy resources(DERs), microgrids, as key components, are facing new operational control challenges. Conventional centralized cloud computing architectures struggle to meet the requirements of microgrids for real-time decision-making, privacy protection, and distributed coordination. Edge intelligence technology offers a novel technical paradigm to address these issues. This paper first outlines the technical architecture of edge intelligence in microgrid operation and control. Subsequently, from the application perspectives of energy management, stability control, energy trading, and source-load forecasting, it provides a comparative analysis of the advantages of edge intelligence over conventional methods. Finally, it offers insights into future developments, including communication mode optimization, security protection mechanisms, algorithm generalization capabilities, cloud-edge collaboration architecture, and standardization implementation.
关键词(KeyWords):
微电网;运行控制;边缘智能;人工智能
microgrid;operational control;edge intelligence;artificial intelligence
基金项目(Foundation): 四川省科技计划资助项目(25JBGS0052)
作者(Author):
许梓荣,刘友波,廖红兵,唐志远,高红均,刘俊勇
XU Zirong,LIU Youbo,LIAO Hongbing,TANG Zhiyuan,GAO Hongjun,LIU Junyong
DOI: 10.19585/j.zjdl.202510011
参考文献(References):
- [1]郑亚先,杨争林,冯树海,等.碳达峰目标场景下全国统一电力市场关键问题分析[J].电网技术,2022,46(1):1-20.ZHENG Yaxian,YANG Zhenglin,FENG Shuhai,et al.Key issue analysis in national unified power market under target scenario of carbon emission peak[J].Power System Technology,2022,46(1):1-20.
- [2]任大伟,肖晋宇,侯金鸣,等.双碳目标下我国新型电力系统的构建与演变研究[J].电网技术,2022,46(10):3831-3839.REN Dawei,XIAO Jinyu,HOU Jinming,et al.Construction and evolution of China’s new power system under dual carbon goal[J].Power System Technology,2022,46(10):3831-3839.
- [3]舒印彪,汤涌,张正陵,等.新型配电网构建及其关键技术[J].中国电机工程学报,2024,44(17):6721-6733.SHU Yinbiao,TANG Yong,ZHANG Zhengling,et al.Construction of new distribution network and its key technologies[J]. Proceedings of the CSEE,2024,44(17):6721-6733.
- [4]周孝信,陈树勇,鲁宗相,等.能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904.ZHOU Xiaoxin,CHEN Shuyong,LU Zongxiang,et al.Technology features of the new generation power system in China[J].Proceedings of the CSEE,2018,38(7):1893-1904.
- [5]孙永辉,孟雲帆,葛磊蛟,等.人工智能赋能微电网运行优化的应用及展望[J].高电压技术,2023,49(6):2239-2252.SUN Yonghui,MENG Yunfan,GE Leijiao,et al.Application and prospect of microgrid operation optimization enabled by artificial intelligence[J].High Voltage Engineering,2023,49(6):2239-2252.
- [6]王继业.人工智能赋能源网荷储协同互动的应用及展望[J].中国电机工程学报,2022,42(21):7667-7682.WANG Jiye.Application and prospect of source-grid-loadstorage coordination enabled by artificial intelligence[J].Proceedings of the CSEE,2022,42(21):7667-7682.
- [7]张有兵,林一航,黄冠弘,等.深度强化学习在微电网系统调控中的应用综述[J].电网技术,2023,47(7):2774-2788.ZHANG Youbing,LIN Yihang,HUANG Guanhong,et al. Review on applications of deep reinforcement learning in regulation of microgrid systems[J]. Power System Technology,2023,47(7):2774-2788.
- [8] ZHANG C M,LU Y.Study on artificial intelligence:The state of the art and future prospects[J].Journal of Industrial Information Integration,2021,23:100224.
- [9] KRENN M,POLLICE R,GUO S Y,et al.On scientific understanding with artificial intelligence[J]. Nature Reviews Physics,2022,4(12):761-769.
- [10]侯庆春,杜尔顺,田旭,等.数据驱动的电力系统运行方式分析[J].中国电机工程学报,2021,41(1):1-12.HOU Qingchun,DU Ershun,TIAN Xu,et al.Data-driven power system operation mode analysis[J].Proceedings of the CSEE,2021,41(1):1-12.
- [11]白昱阳,黄彦浩,陈思远,等.云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望[J].自动化学报,2020,46(3):397-410.BAI Yuyang,HUANG Yanhao,CHEN Siyuan,et al.Cloud-edge intelligence:status quo and future prospective of edge computing approaches and applications in power system operation and control[J].Acta Automatica Sinica,2020,46(3):397-410.
- [12]仝杰,齐子豪,蒲天骄,等.电力物联网边缘智能:概念、架构、技术及应用[J].中国电机工程学报,2024,44(14):5473-5496.TONG Jie,QI Zihao,PU Tianjiao,et al.Edge intelligence to power Internet of Things:concept,architecture,technology and application[J].Proceedings of the CSEE,2024,44(14):5473-5496.
- [13] WANG X F,HAN Y W,LEUNG V C M,et al.Convergence of edge computing and deep learning:a comprehensive survey[J].IEEE Communications Surveys&Tutorials,2020,22(2):869-904.
- [14] IRMAK E,KABALCI E,KABALCI Y.Digital transformation of microgrids:a review of design,operation,optimization,and cybersecurity[J].Energies,2023,16(12):4590.
- [15] TIGHTIZ L,YOO J.A review on a data-driven microgrid management system integrating an active distribution network:challenges,issues,and new trends[J]. Energies,2022,15(22):8739.
- [16] DEV A,KUMAR V,KHARE G,et al. Advancements and challenges in microgrid technology:a comprehensive review of control strategies,emerging technologies,and future directions[J].Energy Science&Engineering,2025,13(4):2112-2134.
- [17] MUTLURI R B,SAXENA D. A comprehensive overview and future prospectives of networked microgrids for emerging power systems[J].Smart Grids and Sustainable Energy,2024,9(2):45.
- [18] MOHAMMADI E, ASGARIMOGHADDAM M,ALIZADEH M,et al.A review on application of artificial intelligence techniques in microgrids[J].IEEE Journal of Emerging and Selected Topics in Industrial Electronics,2022,3(4):878-890.
- [19] BEN SLAMA S.Prosumer in smart grids based on intelligent edge computing:a review on Artificial Intelligence Scheduling Techniques[J].Ain Shams Engineering Journal,2022,13(1):101504.
- [20] BOURECHAK A,ZEDADRA O,KOUAHLA M N,et al.At the confluence of artificial intelligence and edge computing in IoT-based applications:a review and new perspectives[J].Sensors(Basel),2023,23(3):1639.
- [21]陈永东,刘友波,沈晓东,等.面向城市能源系统分布式资源的边缘智能技术综述[J].电力系统自动化,2022,46(17):142-152.CHEN Yongdong,LIU Youbo,SHEN Xiaodong,et al.Review of edge intelligence technology for distributed energy resources in urban energy systems[J].Automation of Electric Power Systems,2022,46(17):142-152.
- [22] LI E,ZENG L K,ZHOU Z,et al.Edge AI:on-demand accelerating deep neural network inference via edge computing[J].IEEE Transactions on Wireless Communications,2020,19(1):447-457.
- [23] XU D L,LI T,LI Y,et al.Edge intelligence:empowering intelligence to the edge of network[J].Proceedings of the IEEE,2021,109(11):1778-1837.
- [24] ZHOU Z,CHEN X,LI E,et al.Edge intelligence:paving the last mile of artificial intelligence with edge computing[J].Proceedings of the IEEE,2019,107(8):1738-1762.
- [25] DENG S G,ZHAO H L,FANG W J,et al.Edge intelligence:the confluence of edge computing and artificial intelligence[J].IEEE Internet of Things Journal,2020,7(8):7457-7469.
- [26] WANG X F,HAN Y W,LEUNG V C M,et al.Edge AI:convergence of edge computing and artificial intelligence[M].Singapore:Springer,2020.
- [27] KHAN W Z,AHMED E,HAKAK S,et al.Edge computing:a survey[J]. Future Generation Computer Systems,2019,97:219-235.
- [28]刘通,方璐,高洪皓.边缘计算中任务卸载研究综述[J].计算机科学,2021,48(1):11-15.LIU Tong,FANG Lu,GAO Honghao. Survey of task offloading in edge computing[J].Computer Science,2021,48(1):11-15.
- [29]侯祥鹏,兰兰,陶长乐,等.边缘智能与协同计算:前沿与进展[J].控制与决策,2024,39(7):2385-2404.HOU Xiangpeng,LAN Lan,TAO Changle,et al.Edge intelligence and collaborative computing:frontiers and advances[J].Control and Decision,2024,39(7):2385-2404.
- [30]王健宗,孔令炜,黄章成,等.联邦学习算法综述[J].大数据,2020,6(6):64-82.WANG Jianzong,KONG Lingwei,HUANG Zhangcheng,et al.Research review of federated learning algorithms[J].Big Data Research,2020,6(6):64-82.
- [31] LIU L M,ZHANG J,SONG S H,et al.Client-edge-cloud hierarchical federated learning[C]//ICC 2020-2020 IEEE International Conference on Communications(ICC).June7-11,2020.Dublin,Ireland.IEEE,2020:1-6.
- [32]董裕民,张静,谢昌佐,等.云边端架构下边缘智能计算关键问题综述:计算优化与计算卸载[J].电子与信息学报,2024,46(3):765-776.DONG Yumin,ZHANG Jing,XIE Changzuo,et al.A survey of key issues in edge intelligent computing under cloud-edge-terminal architecture:computing optimization and computing offloading[J].Journal of Electronics&Information Technology,2024,46(3):765-776.
- [33]赵婵婵,吕飞,石宝,等.面向边缘智能的协同推理方法研究综述[J].计算机工程与应用,2025,61(3):1-20.ZHAO Chanchan,LYU Fei,SHI Bao,et al.Review of collaborative inference methods for edge intelligence[J].Computer Engineering and Applications,2025,61(3):1-20.
- [34]张津源,蒲天骄,李烨,等.基于多智能体深度强化学习的分布式电源优化调度策略[J].电网技术,2022,46(9):3496-3504.ZHANG Jinyuan,PU Tianjiao,LI Ye,et al. Multi-agent deep reinforcement learning based optimal dispatch of distributed generators[J].Power System Technology,2022,46(9):3496-3504.
- [35] WANG S Y,DUAN J J,SHI D,et al.A data-driven multiagent autonomous voltage control framework using deep reinforcement learning[J]. IEEE Transactions on Power Systems,2020,35(6):4644-4654.
- [36] LEKIDIS A,PAPAGEORGIOU E I. Edge-based shortterm energy demand prediction[J]. Energies,2023,16(14):5435.
- [37] FANG W W,XUE F,DING Y,et al. EdgeKE:an ondemand deep learning IoT system for cognitive big data on industrial edge devices[J]. IEEE Transactions on Industrial Informatics,2021,17(9):6144-6152.
- [38]张星洲,鲁思迪,施巍松.边缘智能中的协同计算技术研究[J].人工智能,2019,6(5):55-67.ZHANG Xingzhou,LU Sidi,SHI Weisong. Research on collaborative computing technology in edge intelligence[J].AI-View,2019,6(5):55-67.
- [39] LETAIEF K B,SHI Y M,LU J M,et al.Edge artificial intelligence for 6G:vision,enabling technologies,and applications[J].IEEE Journal on Selected Areas in Communications,2022,40(1):5-36.
- [40] CUI Y G,CAO K,ZHOU J L,et al.Optimizing training efficiency and cost of hierarchical federated learning in heterogeneous mobile-edge cloud computing[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2023,42(5):1518-1531.
- [41]牛鑫,吕现伟,余辰.边缘智能:现状与挑战[J].武汉大学学报(理学版),2023,69(2):270-282.NIU Xin,LüXianwei,YU Chen.Edge intelligence:stateof-the-art and challenges[J].Journal of Wuhan University(Natural Science Edition),2023,69(2):270-282.
- [42] THORNBUSH M,GOLUBCHIKOV O. Smart energy cities:The evolution of the city-energy-sustainability nexus[J].Environmental Development,2021,39:100626.
- [43]王彩霞,时智勇,梁志峰,等.新能源为主体电力系统的需求侧资源利用关键技术及展望[J].电力系统自动化,2021,45(16):37-48.WANG Caixia,SHI Zhiyong,LIANG Zhifeng,et al.Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J].Automation of Electric Power Systems,2021,45(16):37-48.
- [44] DOMíNGUEZ-BARBERO D,GARCíA-GONZáLEZ J,SANZ-BOBI Má,et al.Energy management of a microgrid considering nonlinear losses in batteries through Deep Reinforcement Learning[J].Applied Energy,2024,368:123435.
- [45] WEI D,FAN Z,MENG L,et al.Imitation learning based real-time decision-making of microgrid economic dispatch under multiple uncertainties[J].Journal of Modern Power Systems and Clean Energy,2024,12(4):1183-1193.
- [46] ZHANG B,HU W H,XU X,et al.Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach[J].Renewable Energy,2022,200:433-448.
- [47] HOSSEINI E,GARCíA-TRIVI?O P,HORRILLOQUINTERO P,et al. A novel reinforcement learningbased multi-objective energy management system for multi-energy microgrids integrating electrical,hydrogen,and thermal elements[J]. Electric Power Systems Research,2025,242:111474.
- [48] DOMíNGUEZ-BARBERO D,GARCíA-GONZáLEZ J,SANZ-BOBI Má. Twin-delayed deep deterministic policy gradient algorithm for the energy management of microgrids[J].Engineering Applications of Artificial Intelligence,2023,125:106693.
- [49] PINCIROLI L,BARALDI P,COMPARE M,et al.Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning[J].Applied Energy,2023,352:121947.
- [50] HUANG M X,LIN X D,FENG Z K,et al.A multi-agent decision approach for optimal energy allocation in microgrid system[J]. Electric Power Systems Research,2023,221:109399.
- [51] DAS A,NI Z,ZHONG X N.Microgrid energy scheduling under uncertain extreme weather:Adaptation from parallelized reinforcement learning agents[J].International Journal of Electrical Power&Energy Systems,2023,152:109210.
- [52] LI H T,YANG Y H,LIU Y R,et al.Federated dueling DQN based microgrid energy management strategy in edge-cloud computing environment[J]. Sustainable Energy,Grids and Networks,2024,38:101329.
- [53]周毅斌,肖浩,裴玮,等.基于纵向联邦学习的微电网群协同优化运行与策略进化[J].电力系统自动化,2023,47(11):121-132.ZHOU Yibin,XIAO Hao,PEI Wei,et al. Collaborative optimization operation and strategy evolution of microgrid cluster based on vertical federated learning[J].Automation of Electric Power Systems,2023,47(11):121-132.
- [54] WANG X W,LIU S,XU Q W,et al.Distributed multiagent reinforcement learning for multi-objective optimal dispatch of microgrids[J]. ISA Transactions,2025,158:130-140.
- [55] WANG Y S,XIAO M,YOU Y,et al.Optimized energy dispatch for microgrids with distributed reinforcement learning[J].IEEE Transactions on Smart Grid,2024,15(3):2946-2956.
- [56] WANG Y,JIN X Z,XU R,et al.Task offloading based-on deep reinforcement learning for microgrid[C]//2022IEEE 10th International Conference on Information,Communication and Networks(ICICN).August 23-24,2022.Zhangye,China.IEEE,2022:281-285.
- [57] DUAN Z X,QIAO Y F,CHEN S,et al.Lightweight federated reinforcement learning for independent request scheduling in microgrids[C]//2022 IEEE International Conference on Smart Internet of Things(SmartIoT).August 19-21,2022.Suzhou,China.IEEE,2022:208-215.
- [58] WU Z F,LV Z,HUANG X W,et al. Data driven frequency control of isolated microgrids based on priority experience replay soft deep reinforcement learning algorithm[J].Energy Reports,2024,11:2484-2492.
- [59] LI J W,CHENG Y Y.Deep meta-reinforcement learningbased data-driven active fault tolerance load frequency control for islanded microgrids considering Internet of Things[J].IEEE Internet of Things Journal,2024,11(6):10295-10303.
- [60] ABOUZEID S I,CHEN Y,ZAERY M,et al.Load frequency control based on reinforcement learning for microgrids under false data attacks[J].Computers and Electrical Engineering,2025,123:110093.
- [61] BARBALHO P I N,LACERDA V A,FERNANDES R A S,et al. Deep reinforcement learning-based secondary control for microgrids in islanded mode[J].Electric Power Systems Research,2022,212:108315.
- [62] LIU W,SHEN J,ZHANG S C,et al.Distributed secondary control strategy based on Q-learning and pinning control for droop-controlled microgrids[J].Journal of Modern Power Systems and Clean Energy,2022,10(5):1314-1325.
- [63] YAN R D,WANG Y,XU Y,et al.A multiagent quantum deep reinforcement learning method for distributed frequency control of islanded microgrids[J].IEEE Transactions on Control of Network Systems,2022,9(4):1622-1632.
- [64] LIN S W,CHU C C,TUNG C F.Distributed actor-critic neural networks-based structure for frequency synchronization in isolated AC microgrids[J].IEEE Transactions on Industry Applications,2024,60(3):4433-4445.
- [65] XIA Y,XU Y,WANG Y,et al. A safe policy learningbased method for decentralized and economic frequency control in isolated networked-microgrid systems[J].IEEE Transactions on Sustainable Energy,2022,13(4):1982-1993.
- [66] LI J W,ZHOU T.Bio-inspired distributed load frequency control in Islanded Microgrids:a multi-agent deep reinforcement learning approach[J].Applied Soft Computing,2024,166:112146.
- [67] CHEN P C,LIU S C,CHEN B,et al.Multi-agent reinforcement learning for decentralized resilient secondary control of energy storage systems against dos attacks[J].IEEE Transactions on Smart Grid,2022,13(3):1739-1750.
- [68] ZHANG H F,YUE D,DOU C X,et al.Resilient optimal defensive strategy of micro-grids system via distributed deep reinforcement learning approach against FDI attack[J].IEEE Transactions on Neural Networks and Learning Systems,2024,35(1):598-608.
- [69] CAO M,YIN Z Y,WANG Y J,et al.A reliable energy trading strategy in intelligent microgrids using deep reinforcement learning[J].Computers and Electrical Engineering,2023,110:108796.
- [70] JOGUNOLA O,TSADO Y,ADEBISI B,et al.Trading strategy in a local energy market, a deep reinforcement learning approach[C]//2021 IEEE Electrical Power and Energy Conference(EPEC). October 22-31,2021. Toronto,ON,Canada.IEEE,2021:347-352.
- [71] BUI V H,HUSSAIN A,SU W C. A dynamic internal trading price strategy for networked microgrids:a deep reinforcement learning-based game-theoretic approach[J].IEEE Transactions on Smart Grid,2022,13(5):3408-3421.
- [72] LIU W,ZHANG S C,ZHANG X P,et al. Distributed game coordination control method based on reinforcement learning for multi-microgrid[J].Energy Reports,2023,9:912-921.
- [73] KUMAR M,DOHARE U,KUMAR S,et al.Blockchain based optimized energy trading for E-mobility using quantum reinforcement learning[J].IEEE Transactions on Vehicular Technology,2023,72(4):5167-5180.
- [74] SHADEMAN M,KARIMI H,JADID S. Safe resource management of non-cooperative microgrids based on deep reinforcement learning[J].Engineering Applications of Artificial Intelligence,2023,126:106865.
- [75] CAI W Q,KORDABAD A B,GROS S.Energy management in residential microgrid using model predictive control-based reinforcement learning and Shapley value[J]. Engineering Applications of Artificial Intelligence,2023,119:105793.
- [76] BCHIR C,ALOQAILY M,KARRAY F,et al.Advancing fairness in microgrid energy transaction:an alternative approach[C]//20th IEEE International Wireless Communications and Mobile Computing(IEEE IWCMC),Cyprus,2024.
- [77]韦贵熙,刘香港,池明,等.基于多智能体强化学习的微电网能源交易[J].控制工程,2023,30(12):2274-2279.WEI Guixi,LIU Xianggang,CHI Ming,et al.Energy trading in microgrid via multi-agent reinforcement learning[J].Control Engineering of China,2023,30(12):2274-2279.
- [78] CHEN M,SHEN Z R,WANG L,et al.Combined carbon capture and utilization with peer-to-peer energy trading for multimicrogrids using multiagent proximal policy optimization[J]. IEEE Transactions on Control of Network Systems,2024,11(4):2173-2186.
- [79]陈池瑶,苗世洪,姚福星,等.基于多智能体算法的多微电网-配电网分层协同调度策略[J].电力系统自动化,2023,47(10):57-65.CHEN Chiyao,MIAO Shihong,YAO Fuxing,et al.Hierarchical cooperative dispatching strategy of multimicrogrid and distribution networks based on multi-agent algorithm[J]. Automation of Electric Power Systems,2023,47(10):57-65.
- [80]李咸善,陈奥博,程杉,等.基于生态博弈的含云储能微电网多智能体协调优化调度[J].中国电力,2021,54(7):166-177.LI Xianshan,CHEN Aobo,CHENG Shan,et al. Multiagent coordination and optimal dispatch of microgrid with CES based on ecological game[J].Electric Power,2021,54(7):166-177.
- [81]谢昕怡,应黎明,田书圣,等.基于MADDPG和智能合约的微电网交易决策优化[J].电力建设,2022,43(11):142-150.XIE Xinyi,YING Liming,TIAN Shusheng,et al.Optimization of microgrid trading strategy based on MADDPG and smart contracts[J]. Electric Power Construction,2022,43(11):142-150.
- [82] QIU D W,CHEN T Y,STRBAC G,et al.Coordination for multienergy microgrids using multiagent reinforcement learning[J].IEEE Transactions on Industrial Informatics,2023,19(4):5689-5700.
- [83] GAO G,WEN Y,TAO D.Distributed energy trading and scheduling among microgrids via multiagent reinforcement learning[J].IEEE Trans Neural Netw Learn Syst,2023,34(12):10638-10652.
- [84] ZHOU Y T,MA Z J,WANG T Y,et al.Joint energy and carbon trading for multi-microgrid system based on multiagent deep reinforcement learning[J].IEEE Transactions on Power Systems,2024,39(6):7376-7388.
- [85] GAO J K,LI Y,WANG B,et al.Multi-microgrid collaborative optimization scheduling using an improved multiagent soft actor-critic algorithm[J].Energies,2023,16(7):3248.
- [86] DONG W C,SUN H X,MEI C X,et al.Forecast-driven stochastic optimization scheduling of an energy management system for an isolated hydrogen microgrid[J]. Energy Conversion and Management,2023,277:116640.
- [87]李雯,魏斌,韩肖清,等.面向滚动优化调度的光伏发电功率日内超短期预测[J].电力系统及其自动化学报,2020,32(11):43-49.LI Wen,WEI Bin,HAN Xiaoqing,et al. Intraday ultrashort-term forecasting of photovoltaic power generation for rolling optimal scheduling[J].Proceedings of the CSUEPSA,2020,32(11):43-49.
- [88]陈晓科,陈奇芳,何婷,等.低成本微电网轻量化在线超短期光伏功率预测算法设计[J].控制理论与应用,2016,33(12):1658-1666.CHEN Xiaoke,CHEN Qifang,HE Ting,et al.Design of simplified online ultra-short term photovoltaic output forecasting algorithm for low cost microgrid[J]. Control Theory&Applications,2016,33(12):1658-1666.
- [89]王印松,吕率豪.基于改进时间卷积网络的微电网超短期负荷预测[J].太阳能学报,2024,45(6):255-263.WANG Yinsong,LYU Shuaihao.Ultra-short-term power load prediction of micro-grid based on improved temporal convolutional network[J]. Acta Energiae Solaris Sinica,2024,45(6):255-263.
- [90]于昕妍,沈艳霞,陈杰,等.考虑概率区间的微电网短期负荷多目标预测方法[J].电子学报,2017,45(4):930-936.YU Xinyan,SHEN Yanxia,CHEN Jie,et al. A multiobjective prediction method for short-term microgrid load considering interval probability[J]. Acta Electronica Sinica,2017,45(4):930-936.
- [91]李岩,刘景远,王达,等.考虑源荷不确定性与多元储能共享的多微电网市场主从博弈优化策略[J].电力系统及其自动化学报,2024,36(11):121-129.LI Yan,LIU Jingyuan,WANG Da,et al.Multi-microgrid market master-slave game optimization strategy considering source-load uncertainty and multi-energy storage sharing[J]. Proceedings of the CSU-EPSA,2024,36(11):121-129.
- [92] LI Y,WANG R N,YANG Z.Optimal scheduling of isolated microgrids using automated reinforcement learningbased multi-period forecasting[J]. IEEE Transactions on Sustainable Energy,2022,13(1):159-169.
- [93] VENKATARAMANAN V,KAZA S,ANNASWAMY A M. DER forecast using privacy-preserving federated learning[J]. IEEE Internet of Things Journal,2023,10(3):2046-2055.
- [94] WU L Q,FU S J,LUO Y C,et al. SecTCN:privacypreserving short-term residential electrical load forecasting[J].IEEE Transactions on Industrial Informatics,2024,20(2):2508-2518.
- [95] IQBAL M S,ADNAN M. Edge computing and transfer learning-based short-term load forecasting for residential and