电力变压器故障类型与关键状态量关联规则分析Analysis of the Power Transformer Fault Types and Critical State Variables Association
董翔,赵璧,戴瑞成,董小兵
DONG Xiang,ZHAO Bi,DAI Ruicheng,DONG Xiaobing
摘要(Abstract):
传统电力变压器设备运维大多采用状态检修技术,但积累的状态监测和检测数据没有得到充分挖掘利用,造成信息资源的浪费。以故障特征量为前项,以故障类型为后项,设置最小支持度和最小置信度,运用Apriori数据挖掘经典算法挖掘出变压器故障和关键状态量之间的关联规则。基于关联规则挖掘原理,利用SPSS Modeler软件平台建立电力变压器故障关联规则挖掘模型进行分析,得出了故障诊断的具体流程,旨在采取关联规则挖掘的方法发现状态特征量和故障类别之间的内在联系,对故障进行判定。
The operation and maintenance of traditional transformer equipment mostly adopt condition-based maintenance technology. However, the accumulated condition monitoring and detection data have not been fully mined, which results in the waste of information resources. The association rules between transformer faults and fault state variables are mined by using classical Apriori algorithm, in which the least support degree and the least confidence degree are set up with the fault characteristic quantity as the front term and the fault type as the rear term. Based on the software platform of SPSS Modeler, the model of power transformer fault association rules mining is established, which concludes the specific process of fault diagnosis and aims to adopt association rule mining method to detect the interior connection between state characteristic quantity and fault faults and judge the faults.
关键词(KeyWords):
电力设备;变压器;故障推理;数据挖掘;状态量关联
power equipment;transformer;fault reasoning;data mining;state quantity association
基金项目(Foundation): 国家电网有限公司科技项目(GY71-15-052);; 国家自然科学基金(50907051)
作者(Author):
董翔,赵璧,戴瑞成,董小兵
DONG Xiang,ZHAO Bi,DAI Ruicheng,DONG Xiaobing
DOI: 10.19585/j.zjdl.202002004
参考文献(References):
- [1]赵庆周,李勇,田世明,等.基于智能配电网大数据分析的状态监测与故障处理方法[J].电网技术,2016,40(3):774-780.
- [2]屈子程,高亮,康保林,等.基于多源数据的电力系统故障全信息诊断模型[J].电力系统保护与控制,2019,47(22):59-66.
- [3]曹永峰,翟峰,肖建红,等.用电信息采集系统故障运维知识库的设计与应用[J].电力信息与通信技术,2018,16(3):81-86.
- [4]刘江明,孙正竹,艾云飞,等.500 kV变压器铁心接地引出线断线故障分析[J].浙江电力,2017,36(2):38-42.
- [5]苏舟,李灿,姚李孝,等.电力负荷数据预处理研究及应用[J].电网与清洁能源,2017,33(5):40-43.
- [6]计荣荣,叶海明,邹晖,等.断路器故障引起500 k V变压器跳闸的原因分析及解决方案[J].浙江电力,2018,37(12):62-65.
- [7]黄丽.基于改进PSO优化RBF神经网络的变压器故障诊断[J].电力信息与通信技术,2018,16(9):66-72.
- [8]孙启悦,王龙.基于超像素图像分割的变电设备故障诊断研究[J].浙江电力,2017,36(12):86-89.
- [9]牛瑞,张望妮.SCADA系统异常数据分析及治理建议[J].电网与清洁能源,2017,33(9):68-71.
- [10]朱小东,张刚,赵飞,等.某200 MW发电机振动及氢气系统故障分析及处理[J].发电与空调,2017,38(4):29-32.
- [11]赵文清,祝玲玉,高树国,等.基于多源信息融合的电力变压器故障诊断方法研究[J].电力信息与通信技术,2018,16(10):25-30.
- [12]郭志民,张永浩,周兴华,等.基于多源数据融合策略的配电网停电故障分析[J].电网与清洁能源,2018,34(1):84-88.
- [13]邢涛,李志军,曹玲燕,等.基于自适应免疫算法的变压器故障诊断[J].发电与空调,2017,38(6):42-45.
- [14]张旭,魏娟,赵冬梅,等.一种用于电网故障诊断的遥信信息解析方法[J].中国电机工程学报,2014,34(22):3824-3833.
- [15]吴瞻宇,董明,王健一,等.基于模糊关联规则挖掘的电力变压器故障诊断方法[J].高压电器,2019,55(8):157-163.