基于多维特征量融合的配电网拓扑异常溯源与应用模型研究An Anomaly Tracing and Application Model of Distribution Network Topology Based on Multi-dimensional Feature Fusion
李正光,钱锋强,刘艾旺,龚书能,邹健
LI Zhengguang,QIAN Fengqiang,LIU Aiwang,GONG Shuneng,ZOU Jian
摘要(Abstract):
线路拓扑异常是线损治理中影响较大的因素之一,目前中压配电网基础数据量大、异常诊断分析复杂等原因造成线损治理排查效率低。结合多年中压线损管理经验,对中压线路-变压器档案关系构建配电网拓扑异常溯源与应用模型,将电网GIS(地理信息系统)、 PMS2.0系统、用电采集系统、营销业务系统、调度系统等多源融合,利用大数据挖掘技术,充分挖掘数据价值,以机器学习算法为基础,规则引擎为补充,从线变关系档案异常、双电源配置错误和线路转供运行三大问题入手,多维度全方位实时分析10(20) kV线路拓扑异常,精准定位线路拓扑异常点。该模型将有效指导拓扑异常基础数据治理,进一步提升线损管理水平,为维护企业经济利益和可持续精益化管理提供有力支撑。
Abnormal circuit topology is one of the influential factors in line loss management, and the large basic data and complicated abnormity diagnosis and analysis lead to inefficiency of line loss management and investigation. Based on medium-voltage line loss management experience over the years, an anomaly tracing and application model is established for the relationship between medium-voltage lines and transformer files to integrate grid GIS(geographical information system), PMS2.0 system, electricity information acquisition system, marketing service system and dispatching system and to employ big data mining technology to fully exert data value; based on machine learning algorithm and supplemented by rule engine, real-time analysis of 10(20) kV line topology anomaly is conducted multidimensionally and ultimately from the perspectives of linetransformer relation file anomaly, duplicate supply misconfiguration and line transferred operation to precisely locate line topology anomaly point. The model will help guide basic data management due to topology anomaly, furthering line loss management level and providing robust support for maintaining economic interest of enterprises and sustainable lean management.
关键词(KeyWords):
配电网;拓扑异常;数据挖掘;智能诊断
distribution networks;topology anomaly;data mining;intelligent diagnosis
基金项目(Foundation):
作者(Author):
李正光,钱锋强,刘艾旺,龚书能,邹健
LI Zhengguang,QIAN Fengqiang,LIU Aiwang,GONG Shuneng,ZOU Jian
DOI: 10.19585/j.zjdl.202007013
参考文献(References):
- [1]林城杰.物联网在配电网运维管理中的应用及意义研究[J].科技与创新,2017(21):90-91.
- [2]吕军,盛万兴,刘日亮,等.配电物联网设计与应用[J].高电压技术,2019,45(6):1681-1688.
- [3]徐明虎.浅谈电力系统网架结构规划优化[J].科技创新与应用,2016(29):196
- [4]王蕾.大规模电力系统静态稳定增强的在线电网拓扑优化[D].天津:天津大学,2015.
- [5]NEERAJ GUPTA.A review on the inclusion of wind gen eration in power system studies[J].Renewable and Sustainable Energy Reviews.2016,59:530-543.
- [6]张璨,林振智,文福拴,等.电力系统网络重构的多目标双层优化策略[J].电力系统自动化,2014,38(7):29-38.
- [7]MOUSAVIAN S,VALENZUELA J,WANG J H.A twophase investment model for optimal allocation of phasor measurement units considering transmission switching[J].Electric Power Systems Research,2015,119:492-498
- [8]张东霞,邓春宇,王晓蓉.大数据在配电系统的应用[J].供用电,2017,34(6):2-7.
- [9]时慧喆,刘志鹏,钟文强.基于混合优化算法的配电网动态重构研究[J].电气技术,2016(6):41-46.
- [10]颜湘武,段聪,吕正,等.基于动态拓扑分析的遗传算法在配电网重构中的应用[J].电网技术,2014,38(6):1639-1643.
- [11]江东林,刘天琪,李樊.采用时段动态划分和分层优化策略的配电网重构[J].电网技术,2012,36(2):153-157.
- [12]ZHANG H,YIN W T,CHENG L Z.Necessary and sufficient conditions of solution uniqueness in 1-Norm minimization[J].Journal of Optimization Theory and Applications,2015,164(1):109-122.
- [13]CHAI T,DRAXLER R R.Root mean square error(RMSE)or mean absolute error(MAE)-Arguments against avoiding RMSE in the literature[J].Geoscientific Model Development,2014,7(3):1247-1250.
- [14]何迈,刘俊勇,任瑞玲,等.电力系统运行状态大数据分析实验仿真[J].实验室研究与探索,2017,36(1):73-79.
- [15]韩俊,谈健,黄河,等.基于改进K-means聚类算法的供电块划分方法[J].电力自动化设备,2015,35(6):123-129.
- [16]郝广涛,韩学山,梁军,等.多代理系统和黑板模型结合的全景电网拓扑分析[J].电工技术学报,2014,29(12):200-210.
- [17]王文彬.10 kV配电网的线损管理及降损措施[J].中国新技术新产品,2011(3):173-174.
- [18]邱程峰,章坚民,刘理峰,等.变电站为中心配电网单线图(三)美化布局计算[J].电力系统自动化,2019,43(20):170-177.
- [19]章坚民,邱程峰,王锋华,等.变电站为中心配电网单线图(二)初始自动布局[J].电力系统自动化,2019,43(19):124-134.
- [20]李崇发.强化配电网线损管理的有效方法[J].城市建设理论研究(电子版),2017(20):154.
- [21]刘群英,刘起方,刘登,等.基于能量函数的电网暂态稳定性离线量化指标研究[J].电子科技大学学报,2015,44(5):705-711.
- [22]廖永锋.基于复杂网络理论的电网结构脆弱性评估指标研究[D].成都:电子科技大学,2015.
- [23]韩立烨.融合数据预处理的机器学习在电力预测中的应用研究[D].北京:华北电力大学,2016.
- [24]狄立,郑征,夏旻,等.基于快速密度聚类的电力通信网节点重要性评估[J].电力系统保护与控制,2016,44(13):90-95.
- [25]JIANG K M,ZENG Y,DENG B R,et al.Risk evaluation method of electric power communication network[C]//2013Ninth International Conference on Natural Computation(ICNC).Shenyang,China.IEEE,2013:1595-1599.
- [26]ANCILLOTTI E,BRUNO R,CONTI M.The role of communication systems in smart grids:Architectures,technical solutions and research challenges[J].Computer Communications,2013,36(17):1665-1697.
- [27]邵丹,石立彬,史静远,等.供电企业基于三层分析模型的线损异常分析及处理研究[J].电力大数据,2019,22(10):78-83.
- [28]刘东升,代盛国,商学斌,等.基于压缩感知理论的缺失数据集下线损预测模型[J].广东电力,2019,32(2):80-86.
- [29]魏昶宇,杨爱璜,胡凡君,等.基于高级量测的线损异常点定位方法[J].电器与能效管理技术,2018(17):58-62.