浙江电力

2023, v.42;No.331(11) 29-38

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进关联分析的行业短期电力负荷预测
A short-term power load forecasting method for industrial sectors based on an improved correlation analysis

虞殷树,陈东海,朱耿,贺旭,白文博
YU Yinshu,CHEN Donghai,ZHU Geng,HE Xu,BAI Wenbo

摘要(Abstract):

行业短期电力负荷的准确预测对于地区电网的安全经济运行具有重要意义。为此,提出一种基于关联分析和卷积神经网络的行业短期电力负荷预测模型。首先,对k-means聚类算法进行优化,并对行业负荷和外部影响因素的原始数据进行聚类处理,以改善后续关联分析的准确性;然后,提出一种基于标准互信息的改进关联分析方法,对各种外部影响因素和行业负荷的关联性进行定量分析;最后,基于卷积神经网络设计一种计及外部影响因素关联性的负荷预测网络,网络在经过训练后可用于行业短期电力负荷的预测。对照实验结果表明,所提模型在各行业的短期电力负荷预测中都具有更好的准确性和稳定性。
Accurate forecasting of short-term power load for industrial sectors plays a pivotal role in ensuring the safe and economic operation of regional power grids. To address this critical need, a short-term power load forecasting model in industries based on correlation analysis and convolutional neural network(CNN) is proposed. First, the k-means clustering algorithm is optimized, and the raw data of industry load and external influencing factors are clustered to improve the accuracy of the subsequent correlation analysis. Then, an improved correlation analysis method based on normalized mutual information(NMI) is proposed to quantitatively assess the correlation between various external influencing factors and industrial loads. Last, a load forecasting network considering the correlation of external influencing factors based on the CNN is designed, which can be used for the short-term power load forecasting of industrial sectors after training. The results of a controlled experiment demonstrate the superiority of the proposed model in terms of both accuracy and stability when it comes to short-term power load forecasting for industrial sectors.

关键词(KeyWords): 负荷预测;关联分析;标准互信息;k-means聚类;卷积神经网络
load forecasting;correlation analysis;NMI;k-means clustering;CNN

Abstract:

Keywords:

基金项目(Foundation): 宁波永耀电力投资集团有限公司科技项目(CY820400QT20210652)

作者(Author): 虞殷树,陈东海,朱耿,贺旭,白文博
YU Yinshu,CHEN Donghai,ZHU Geng,HE Xu,BAI Wenbo

DOI: 10.19585/j.zjdl.202311004

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享