基于局部异常因子的锂离子电池储能系统故障诊断Fault diagnosis of lithium-ion battery energy storage systems based on local outlier factor
彭鹏,林达,汪湘晋,丘意书,董缇,蒋方明
PENG Peng,LIN Da,WANG Xiangjin,QIU Yishu,DONG Ti,JIANG Fangming
摘要(Abstract):
锂离子电池在过充、高温及外短路等滥用工况下工作会导致火灾等事故的发生。通过对锂离子电池进行早期故障诊断,定位故障的具体位置并及时采取相应措施,可以有效避免故障进一步升级为热失控。为此,基于锂离子电池储能系统的运行数据,采用局部异常因子算法对其进行故障诊断分析。通过计算单日及多日的电压运行数据,确定故障电池的具体位置,分析故障电池的异常情况。研究结果验证了局部异常因子算法应用于锂离子电池储能系统故障诊断的有效性。
Lithium-ion batteries may lead to fire and other accidents when working under overcharge, high temperature, and external short circuits. The faults can be prevented from escalating to thermal runaway through early fault diagnosis and fault location of lithium-ion batteries and corresponding measures in time. To this end, based on the operational data of the lithium-ion battery energy storage system, the local outlier factor(LOF) algorithm is used for fault diagnosis and analysis. By calculation of the single-day and multi-day voltage operation data, the specific location of the faulty battery is determined, and the abnormal condition of the battery is analyzed. The research results verify the effectiveness of the LOF algorithm applied to the fault diagnosis of the lithium-ion battery energy storage system.
关键词(KeyWords):
锂离子电池;储能系统;运行数据;局部异常因子;故障诊断
lithium-ion battery;energy storage system;operational data;LOF;fault diagnosis
基金项目(Foundation): 国网浙江省电力有限公司科技项目(B311DS210015)
作者(Author):
彭鹏,林达,汪湘晋,丘意书,董缇,蒋方明
PENG Peng,LIN Da,WANG Xiangjin,QIU Yishu,DONG Ti,JIANG Fangming
DOI: 10.19585/j.zjdl.202305002
参考文献(References):
- [1]叶佳佳,胡成.钠离子电池在电网储能领域的应用前景展望[J].山东电力技术,2021,48(2):7-10.YE Jiajia,HU Cheng.Prospects of application sodium-ion batteries on grid side energy storage[J].Shandong Electric Power,2021,48(2):7-10.
- [2]李泽宇,王晓磊,张世彪,等.基于递推最小二乘法的锂离子电池等值参数在线识别[J].山东电力技术,2021,48(2):1-6.LI Zeyu,WANG Xiaolei,ZHANG Shibiao,et al.On-line identification parameters of lithium-ion battery equivalent model based on recursive least square method[J]. Shandong Electric Power,2021,48(2):1-6.
- [3]石淼岩,王晓磊,张世彪,等.锂离子电池电—热联合仿真平台构建[J].山东电力技术,2020,47(12):1-5.SHI Miaoyan,WANG Xiaolei,ZHANG Shibiao,et al.Construction of Electro-thermal Simulation Platform for Lithium-ion Battery[J]. Shandong Electric Power,2020,48(12):1-5.
- [4] XIA Bing.A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources,2017,337:1-10.
- [5] KANG Y,DUAN B,ZHOU Z,et al. Online multi-fault detection and diagnosis for battery packs in electric vehicles[J].Applied Energy,2020,259:114170.
- [6] SHANG Y,LU G,KANG Y,et al.A multi-fault diagnosis method based on modified Sample Entropy for lithiumion battery strings[J]. Journal of Power Sources,2020,446:227275.
- [7] QIU Y,CAO W,PENG P,et al.A novel entropy-based fault diagnosis and inconsistency evaluation approach for lithium-ion battery energy storage systems[J]. Journal of Energy Storage,2021,41:102852.
- [8] YANG R,XIONG R,MA S,et al.Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks[J].Applied Energy,2020,260:114253.
- [9] LI D,ZHANG Z S,LIU P,et al.Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J].IEEE Transactions on Power Electronics,2021,36(2):1303-1315.
- [10]薛太林,张超,闫来清,等.基于WOA-BP神经网络的锂离子电池健康状态估算[J].山东电力技术,2022,49(10):16-22.XUE Tailin,ZHANG Chao,YAN Laiqing,et al. Health state estimation of lithium-ion battery based on WOA-BP neural network[J]. Shandong Electric Power,2022,49(10):16-22.
- [11] BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD international conference on management of data. May 15-18,2000,Dallas,Texas,USA.New York:ACM,2000:93-104.
- [12]汪欣,蔡旭,李征.结合交叉局部异常因子和注意力机制的超短期风电功率预测方法[J].电力系统保护与控制,2020,48(23):92-99.WANG Xin,CAI Xu,LI Zheng. Ultra-short-term wind power forecasting method based on a cross LOF preprocessing algorithm and an attention mechanism[J]. Power System Protection and Control,2020,48(23):92-99.
- [13]王巨灏,蔡嘉辉,王琨,等.基于KNN与LOF算法的台区线损异常检测[J].电工技术,2021(24):175-177.WANG Juhao,CAI Jiahui,WANG Kun,et al.Detection of abnormal line loss in station area based on KNN and LOF algorithm[J].Electric Engineering,2021(24):175-177.
- [14]宋丽娜,刘淼,秦韬,等.基于LOF与CEEMD的城镇取用水监测数据异常值识别[J].水利信息化,2022(2):33-40.SONG Lina,LIU Miao,QIN Tao,et al.Outlier identification of urban water intake monitoring data based on LOF and CEEMD[J]. Water Resources Informatization,2022(2):33-40.
- [15]刘志硕,彭涛,侯娜.基于局部异常因子算法的首都机场航班延误预警研究[J].民航学报,2022,6(2):21-25.LIU Zhishuo,PENG Tao,HOU Na.Research on Beijing capital airport flight delay warning based on local outlier factor algorithm[J].Journal of Civil Aviation,2022,6(2):21-25.
- [16] LI L,HUANG L S,YANG W,et al.Privacy-preserving LOF outlier detection[J].Knowledge and Information Systems,2015,42(3):579-597.
- [17]殷锋,周绍军,漆翔宇,等.基于改进LOF算法的窃电检测方法研究[J].中南民族大学学报(自然科学版),2022,41(5):579-585.YIN Feng,ZHOU Shaojun,QI Xiangyu,et al. Research on detection method of electricity stealing based on improved LOF algorithm[J].Journal of South-Central Minzu University(Natural Science Edition),2022,41(5):579-585.
- [18]郭小娟.基于局部异常因子的信息网络流量异常检测[J].信息通信,2019,32(11):32-33.GUO Xiaojuan.Anomaly detection of information network traffic based on local anomaly factor[J].Changjiang Information&Communications,2019,32(11):32-33.
- [19]杭菲璐,郭威,陈何雄,等.基于iForest和LOF的流量异常检测[J].计算机应用研究,2022,39(10):3119-3123.HANG Feilu,GUO Wei,CHEN Hexiong,et al. Traffic anomaly detection based on iForest and LOF[J].Application Research of Computers,2022,39(10):3119-3123.
- [20]柏云耀,邹时波,李顶根.基于数据分析方法的动力电池系统滥用故障诊断[J].新能源进展,2020,8(1):1-5.BAI Yunyao,ZOU Shibo,LI Dinggen.Fault diagnosis of power battery system abuse based on data analysis method[J].Advances in New and Renewable Energy,2020,8(1):1-5.
- [21]肖健夫,孙瑞,闵婕,等.锂离子动力电池系统故障检测[J].电源技术,2021,45(6):736-739.XIAO Jianfu,SUN Rui,MIN Jie,et al.Fault detection of lithium-ion power battery system[J]. Chinese Journal of Power Sources,2021,45(6):736-739.
- [22] QIU Y,DONG T,LIN D,et al. Fault diagnosis for lithium-ion battery energy storage systems based on local outlier factor[J]. Journal of Energy Storage,2022,55:105470.
- [23]赵书涛,徐晓会,尹子会,等.基于深度学习断路器储能机构故障诊断方法研究[J].高压电器,2022,58(10):25-32.ZHAO Shutao,XU Xiaohui,YIN Zihui,et al.Research on fault diagnosis method of charging operating mechanism of circuit breaker based on deep learning[J]. High Voltage Apparatus,2022,58(10):25-32.
- [24]李争,张蕊,秦岩,等.基于自适应反演滑模的电池储能系统的能量管理[J].电测与仪表,2022,59(10):67-74.LI Zheng,ZHANG Rui,QIN Yan,et al.Energy management of battery energy storage system based on adaptive inversion sliding mode[J]. Electrical Measurement&Instrumentation,2022,59(10):67-74.