基于大数据背景的集中监控辅助决策系统研究Research on the Auxiliary Decision-making System of Centralized Supervisory in the Context of Big Data
李英,钱建国,方响,杨翾,董航,杨兴超
LI Ying,QIAN Jianguo,FANG Xiang,YANG Xuan,DONG Hang,YANG Xingchao
摘要(Abstract):
随着智能电网的快速发展,电网网架规模不断扩大,变电站数量持续增加,变电设备数量和监控信息数量呈指数型增长,电网监控的安全压力和工作要求与日俱增。传统的集中监控工作模式难以适应新形势要求,需要借助新技术整合数据资源,打通数据通道,实现共享监控分析成果。介绍了基于大数据背景研发的电网集中监控辅助决策系统包含的监控信息标签化分类、监控信息数据化核查、设备状态感知三个重要工作环节的原理,并就基于该技术研发设计的管控平台的人机交互过程进行了简要说明,最后以故障处置实例展示了该技术在电网故障情况下的应用情况。
With the fast development of smart grid, increase of power grid structures and substations, the exponential expansion of power transferring devices and supervisory information, the security pressure and demands of power grid supervisory and control are surging out violently. The traditional working mode of centralized supervisory and control can hardly adapt to the new circumstance, and it is necessary to integrate the data and resources, open database access, and share the data and results of the supervisory information analysis by means of new technologies. This paper mainly introduces the principles of multi-label classification of supervisory information, supervisory data verification and device state sensing of the auxiliary decision-making system of centralized supervisory developed in the context of big data; besides, the paper briefly introduces the principles and the human-machine interaction for the control platform based on the technology and demonstrates the application of the technology in grid fault through fault handling cases.
关键词(KeyWords):
集中监控;大数据;监控信息;状态感知;模拟画像
centralized supervisory;big data;supervisory information;state sensing;portrait simulation
基金项目(Foundation): 国家电网有限公司科技项目(5211WZ18007F)
作者(Author):
李英,钱建国,方响,杨翾,董航,杨兴超
LI Ying,QIAN Jianguo,FANG Xiang,YANG Xuan,DONG Hang,YANG Xingchao
DOI: 10.19585/j.zjdl.201910006
参考文献(References):
- [1]冷喜武,陈国平,白静洁,等.智能电网监控运行大数据分析系统总体设计[J].电力系统自动化,2018,42(12):160-166.
- [2]李荣,郑家桓.一种改进Viterbi算法的应用研究[J].计算机工程与设计,2007,28(3):530-531.
- [3]陈鸿川,刘博,栾文鹏,等.用于非侵入式电力负荷监测的改进Viterbi算法[J].电力系统及其自动化学报,2017,29(2):84-88.
- [4]MAKONIN S,POPOWICH F,BAJIC I V,et al.Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring[J].IEEE Trans on Smart Grid,2016,7(6):2575-2585.
- [5]梁吉光,田俊华,姜杰.基于改进HMM的文本信息抽取模型[J].计算机工程,2011,37(20):178-179.
- [6]边莉,边晨源.电网故障诊断的智能方法综述[J].电力系统保护与控制,2014,42(3):146-153.
- [7]张旭,魏娟,赵冬梅,等.电网故障诊断的研究历程及展望[J].电网技术,2013,37(10):2745-2753.
- [8]曹靖,陈陆燊,邱剑,等.基于语义框架的电网缺陷文本挖掘技术及其应用[J].电网技术,2017,41(2):637-643.
- [9]邱剑,王慧芳,应高亮,等.文本信息挖掘技术及其在断路器全寿命状态评价中的应用[J].电力系统自动化,2016,40(6):107-112.
- [10]王李彧,孙斌,秦童.改进的DBSCAN聚类算法在云任务调度中的应用[J].北京邮电大学学报,2017(S1):71-74.
- [11]KIM J H,CHOI J H,YOO K H,et al.AA-DBSCAN:an approximate adaptive DBSCAN for finding clusters with varying densities[J].The Journal of Supercomputing,2019,75(1):142-169.
- [12]蔡岳,袁津生.基于改进DSCAN算法的文本聚类[J].计算机工程,2011,37(12):50-52.
- [13]冷喜武,陈国平,蒋宇,等.智能电网监控运行大数据分析系统的数据规范和数据处理[J].电力系统自动化,2018,42(19):169-176.
- [14]程汝娇,徐鸿雁.基于RFM模型的半监督聚类算法[J].计算机系统应用,2017,26(11):170-175.
- [15]LI C C,JI Z S,WANG F,et al.Preliminary implementation of the real-time data sharing system based on RFMfor EAST[J].Fusion Engineering and Design,2018(128):95-100.
- [16]王坤,刘鹤飞,蒋成飞.隐马尔可夫结构方程模型及其贝叶斯估计[J].数理统计与管理,2018,37(2):272-279.
- [17]冷喜武,陈国平,蒋宇,等.智能电网监控运行大数据应用模型构建方法[J].电力系统自动化,2018,42(20):115-121.
- [18]闪鑫,陆晓,翟明玉,等.人工智能应用于电网调控的关键技术分析[J].电力系统自动化,2019,43(1):49-57.
- [19]高强,郑乐为,童存智.输变电设备集中监控大数据研究及应用[J].电力大数据,2019,22(3):13-18.
- 集中监控
- 大数据
- 监控信息
- 状态感知
- 模拟画像
centralized supervisory - big data
- supervisory information
- state sensing
- portrait simulation