浙江电力

2025, v.44;No.351(07) 24-32

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于BERT-MRC的电网现场作业文本关键实体识别方法
A BERT-MRC-based method for key entity recognition in power grid field operation texts

费正明,袁可为,黄弘扬,张亦翔,尹凡,周辉,罗华峰
FEI Zhengming,YUAN Kewei,HUANG Hongyang,ZHANG Yixiang,YIN Fan,ZHOU Hui,LUO Huafeng

摘要(Abstract):

对电网现场作业进行管控稽查是保障安全生产的重要举措,而准确识别作业文本中的关键设备实体是实现智能化管控稽查的基础。现有电力实体识别方法依赖大量人工标注的文本数据来训练模型,难以应用于产生速度快、数量多、且存在实体嵌套等复杂关系的电网现场作业文本。在分析电网现场作业相关文本特点的基础上,提出了面向电网作业风险管控稽查的关键实体识别方法,在提高识别效果的同时,大幅降低了模型对有标签数据的需求。首先,使用BERT(基于Transformer的双向自编码器)获取融合上下文特征的文本数据向量;然后,基于BERT-MRC(基于Transformer的双向自编码器-机器阅读理解)将原实体识别任务改造成机器阅读理解任务,完成模型构建;最后,使用基于Noisy Student的小样本学习方法迭代训练模型,大幅降低了模型对有标签数据的需求量。采用真实电网现场作业文本进行实验,结果表明了所提方法的有效性。
Ensuring production safety in power grids requires effective control and inspection of field operations, where accurate recognition of key equipment entities in operation texts serves as the foundation for intelligent control and inspection. However, existing power entity recognition methods rely heavily on large volumes of manually annotated text data to train models, making them difficult to apply to field operation texts, which are generated rapidly, exist in large quantities, and often involve nested entities and other complex relationships. Based on an analysis of the characteristics of power grid field operation texts, this paper proposes a key entity recognition method tailored for risk control and inspection of power grid operations. The method enhances recognition performance while significantly reducing the model's dependence on labeled data. First, bidirectional encoder representations from transformers(BERT) are employed to obtain text data vectors that incorporate contextual features. Then, leveraging BERT-machine reading comprehension(MRC), the entity recognition task is reformulated as an MRC task to build the model. Finally, a few-short learning(FSL) method based on the Noisy Student is applied to iteratively train the model, greatly reducing the reliance on labeled data. Experiments conducted on real-world power grid field operation texts demonstrate the effectiveness of the proposed method.

关键词(KeyWords): 实体识别;机器阅读理解;电网现场作业;风险管控稽查;BERT;小样本学习
entity recognition;MRC;grid field operation;risk control and inspection;BERT;FSL

Abstract:

Keywords:

基金项目(Foundation): 国家电网华东分公司科技项目(520800230008)

作者(Author): 费正明,袁可为,黄弘扬,张亦翔,尹凡,周辉,罗华峰
FEI Zhengming,YUAN Kewei,HUANG Hongyang,ZHANG Yixiang,YIN Fan,ZHOU Hui,LUO Huafeng

DOI: 10.19585/j.zjdl.202507003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享