基于多源数据挖掘的低压配电网线损智能诊断模型Intelligent Diagnostic Model for Line Losses of Distribution Networks Based on Multi-source Data Mining
宋惠忠,顾华忠,顾韬,韦安强,周子誉
SONG Huizhong,GU Huazhong,GU Tao,WEI Anqiang,ZHOU Ziyu
摘要(Abstract):
针对目前中低压配电网线损治理中存在的影响因素多、基础数据量大、异常诊断分析复杂、排查效率低等问题,结合多年线损管理经验,构建了中低压配电网线损智能诊断模型。通过融合PMS2.0系统、用电采集系统、营销业务系统的设备档案、用户档案、用电负荷等多源数据,采用多维度的分析视角叠加,实现低压配电网线损异常的智能诊断,精准定位导致线损异常的关键节点,极大提高了线损管理水平,取得了显著的管理效益、经济效益和社会效益。
In view of the numerous influencing factors, mass base data, complex abnormality diagnosis and analysis and inefficient inspection in line loss treatment of intermediate and low voltage distribution networks,an intelligent line loss diagnosis model for intermediate and low voltage distribution networks was established in accordance to years of successful line loss management experience. By integration with equipment archives of PMS 2.0, power consumption acquisition system, marketing business system and consumer archives and power consumption load, the model can intelligently diagnose abnormal line loss of intermediate and low voltage distribution networks by multi-dimensional analysis prospective overlap to accurately locate key nodes of abnormal line loss, through which line loss management is improved, great management benefit and social benefit are achieved.
关键词(KeyWords):
配电网;线损;数据挖掘;智能诊断
distribution networks;line loss;data mining;intelligent diagnosis
基金项目(Foundation):
作者(Author):
宋惠忠,顾华忠,顾韬,韦安强,周子誉
SONG Huizhong,GU Huazhong,GU Tao,WEI Anqiang,ZHOU Ziyu
DOI: 10.19585/j.zjdl.201712012
参考文献(References):
- [1]李亚,刘丽平,李柏青,等.基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J].中国电机工程学报,2016,36(17):4543-4552.
- [2]张恺凯,杨秀媛,卜从容,等.基于负荷实测的配电网理论线损分析及降损对策[J].中国电机工程学报,2013,33(S1):92-97.
- [3]刘庭磊,王韶,张知,等.采用负荷电量计算低压配电台区理论线损的牛拉法[J].电力系统保护与控制,2015,43(19):143-148.
- [4]邹云峰,梅飞,李悦,等.基于数据挖掘技术的台区合理线损预测模型研究[J].电力需求侧管理,2015,17(4):25-29.
- [5]颜伟,吕志盛,李佐君,等.输电网的蒙特卡罗模拟与线损概率评估[J].中国电机工程学报,2007,27(34):39-45.
- [6]何健,丁侣娜.可视化配网线损理论计算软件的开发应用[J].浙江电力,2002,21(3):6-9.
- [7]潘星,王政,王涛.网络化线损理论计算分析系统的建设及应用[J].浙江电力,2011,30(8):15-19.
- [8]张波,朱泽厅,卢鸣凯,等.营配贯通台区线损异常数据治理方法探讨[J].浙江电力,2015,34(2):9-11.
- [9]杜冰焱,胡学忠.高压专线客户线损的改进计算方法[J].浙江电力,2015,34(7):62-65.
- [10]张凤翱,李国平.基于载波通信技术的低压配电网设备自动化识别系统[J].浙江电力,2017,36(4):60-63.
- [11]AHMADIZAR F,SOLTANIAN K,AKHLAGHIANTAB F,et al.Artificial neural network development by means of a novel combination of grammatical evolution and genetic algorithm[J].Engineering Applications of Artificial Intelligence,2015(39):1-13.
- [12]文福拴,韩祯祥.基于分群算法和人工神经元网络的配电网线损计算[J].中国电机工程学报,1993(3):43-53.
- [13]彭宇文,刘克文.基于改进核心向量机的配电网理论线损计算方法[J].中国电机工程学报,2011,31(34):120-126.
- [14]吴鸿亮,门锟,董楠,等.基于J2EE架构的线损理论计算与诊断分析系统开发与应用[J].电力系统保护与控制,2016,44(5):108-116.
- [15]刘健,段璟靓.配电网极限线损分析及降损措施优化[J].电力系统保护与控制,2013(12):27-35.
- [16]李超英.基于电网智能化的中低压线损管理研究[D].天津:天津大学,2012.
- [17]张波,朱泽厅,卢鸣凯,等.营配贯通台区线损异常数据治理方法探讨[J].浙江电力,2015,34(2):9-11.
- [18]KAO ANNE,STEVE R POTEET,EDS.Natural Language Processing and text mining[M].Springer.Science&Business Media,2007.
- [19]XUE N.Chinese word segmentation as character tagging[J].中文计算语言学期刊,2003,8(1):29-47.
- [20]XUE N,CONVERSE S P.Combining Classifiers for Chinese Word Segmentation[J].First Sighan Workshop Attached with Coling,2002(18):57-63.
- [21]BODON F.A fast APRIORI implementation[C].Proceedings of the IEEE Icdm Workshop on Frequent Itemset Mining Implementations,2003.
- [22]HAMILTON J D.Time series analysis[M].Princeton:princeton university press,1994.
- [23]刘玲,严登俊,龚灯才,等.基于粒子群模糊神经网络的短期电力负荷预测[J].电力系统及其自动化学报,2006,18(3):47-50.
- [24]赵宏伟,任震.考虑周周期性的短期负荷预测[J].中国电机工程学报,1997(3):211-213.
- [25]陶文斌,张粒子,潘弘,等.基于双层贝叶斯分类的空间负荷预测[J].中国电机工程学报,2007,27(7):13-17.
- [26]牛东晓.电力负荷预测技术及其应用[M].北京:中国电力出版社,2009.
- [27]王涓,吴旭鸣,王爱凤.应用皮尔逊相关系数算法查找异常电能表用户[J].电力需求侧管理,2014,16(2):52-54.