基于遗传算法的移动储能车调度方案优化及应用Scheduling Scheme Optimization and Application of Mobile Energy Storage Vehicle Based on Genetic Algorithm
李靖霞,纪陵,左建勋,吴世伟,王紫东
LI Jingxia,JI Ling,ZUO Jianxun,WU Shiwei,WANG Zidong
摘要(Abstract):
随着移动储能车技术的发展,移动储能车的应用快速增长。当移动储能车应用于台区变减载时,需考虑储能车的充放电时间点。因此,提出了一种基于遗传算法的移动储能车调度优化方案。算法的适应函数以经济效益最大化为目标,将满足台区变减载电量的约束为罚函数计入适应度计算中。在编码时,考虑生成个体的可行性,合理设置参数的范围和意义,提高优化效率。算例分析表明,该方案可提高减载能力,达到最优调度效果。
With the development of mobile energy storage vehicle technology, the application of mobile energy storage vehicle is growing rapidly. When the mobile energy storage vehicle is applied to substation transformer load shedding, the charging and discharging time points of the energy storage vehicle should be considered. Therefore, the paper proposes a scheduling optimization scheme based on genetic algorithm for mobile energy storage vehicle. The fitness function of the algorithm takes the maximum economic benefit as the goal and constraints that meet the substation transformer as the penalty function and include it in the adaptability calculation. When coding, the feasibility of individual generation is considered to set the scope and significance of parameters reasonably and improve the optimization efficiency. The example shows that the scheme can improve the load reduction capacity and achieve the optimal scheduling effect.
关键词(KeyWords):
移动储能车;调度;遗传算法
mobile energy storage vehicle;dispatch;genetic algorithm
基金项目(Foundation): 国家电网有限公司科技项目(KJGW2018-014)
作者(Author):
李靖霞,纪陵,左建勋,吴世伟,王紫东
LI Jingxia,JI Ling,ZUO Jianxun,WU Shiwei,WANG Zidong
DOI: 10.19585/j.zjdl.202003008
参考文献(References):
- [1]中国能源研究会储能专委会.储能产业发展蓝皮书[M].北京:中国石化出版社,2019.
- [2]中国化工学会储能工程专业委员会.储能技术及应用[M].北京:化学工业出版社,2018.
- [3]赵梓杉,蒙志全,张俊峰,等.应急微电网中柴储移动电源的协调及均衡控制策略[J].电力系统自动化,2019,43(10):53-59.
- [4]张子翀,覃煜,顾春晖,等.500 kVA飞轮储能UPS电源车运行性能研究[J].移动电源与车辆,2018(3):25-29.
- [5]杨锡运,任杰,李相俊,等.储能系统平滑光伏电站功率波动的变参数斜率控制方法[J].电力系统自动化,2016,40(24):56-63.
- [6]柴炜,李征,蔡旭,等.基于使用寿命模型的大容量电池储能系统变步长优化控制方法[J].电工技术学报,2016,31(14):58-66.
- [7]陈大宇,张粒子,王立国.储能调频系统控制策略与投资收益评估研究[J].现代电力,2016,33(1):80-86.
- [8]刘世林,劲宇,孙海顺.适用于风电功率调控的复合储能系统及其控制策略[J].中国电机工程学报,2015(1):95-102.
- [9]罗煜,黄梅,鲍谚,等.基于储能SOC优化控制的风储电站实时跟踪发电计划控制策略[J].电工技术学报,2016,31(S1):214-220.
- [10]张旭升,李瑞生,黄利军,等.基于分层储能的主动配电网需求响应控制策略研究及实现[J].电力系统保护与控制,2017,45(15):40-49.
- [11]陈谦,陈霄逸,金宇清,等.基于混合储能的大型风电场优化控制[J].电力自动化设备,2015,35(4):70-76.
- [12]钱叶牛,汪剑波,孙健,等.移动式应急电源车在北京电网供电保障中的应用研究[J].电子技术应用,2015(S1):269-271.
- [13]杨艺云,张阁,彭建华,等.基于智能化储能式应急电源系统的设计研究[J].电源技术,2016,40(1):153-156.
- [14]赵明宇,徐石明,高辉,等.基于模糊K-means算法的电动汽车应急供电策略[J].电力系统自动化,2016,40(5):91-95.
- [15]陈燕,于放,田月,等.基于Hadoop的车辆调度算法优化及应用[J].计算机系统应用,2018,27(10):268-272.