基于数据驱动的锂离子电池健康状态评估综述Review of Data-driven State of Health Estimation for Lithium-ion Battery
赵显赫,耿光超,林达,李志浩,张杨
ZHAO Xianhe,GENG Guangchao,LIN Da,LI Zhihao,ZHANG Yang
摘要(Abstract):
随着锂离子电池在各类储能系统中的广泛应用,其健康管理及退化分析已成为储能电站运维、电动汽车安全监测、退役动力电池梯次利用等时下多个领域的热点问题。与此同时,大数据及机器学习技术的发展突破了复杂非线性系统难以建模的束缚,使得基于数据驱动的电池健康评估成为可能。详细综述了基于数据驱动的锂离子电池健康状态评估的研究现状,分析了电池退化的影响因素,归纳并比较了基于数据驱动的电池健康状态估计及剩余寿命预测建模方法,最后总结了该领域当前的挑战及未来的发展趋势。
As lithium-ion batteries are widely applied in various energy storage systems, health management and degradation analysis now have become hot issues in many fields including operation and maintenance of energy storage power stations, the safety monitoring for electric vehicles and cascade utilization of decommissioned power lithium battery. At the same time, the development of big data and machine learning techniques have broken the constraints of the difficulty in modeling complex nonlinear systems, making it possible to estimate battery health based on data-driven methods. This paper provides a detailed overview of the current research status of data-driven lithium-ion battery health estimation, analyzes the influencing factors of battery degradation, summarizes and compares modeling methods of battery health state estimation and residual life prediction. Finally, it summarizes the current challenges and development trend in this field.
关键词(KeyWords):
锂离子电池;退化;健康状态评估;剩余寿命预测;数据驱动
lithium-ion battery;degradation;state of health estimation;residual life prediction;data-driven
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS180037)
作者(Author):
赵显赫,耿光超,林达,李志浩,张杨
ZHAO Xianhe,GENG Guangchao,LIN Da,LI Zhihao,ZHANG Yang
DOI: 10.19585/j.zjdl.202107011
参考文献(References):
- [1]缪平,姚祯,LEMMON J,等.电池储能技术研究进展及展望[J].储能科学与技术,2020,9(3):670-678.
- [2]邵爱芬,王振波,王琳,等.通信技术卫星二号锂离子蓄电池组的特性和应用研究[J].储能科学与技术,2018,7(2):345-352.
- [3]张怀亮.船用锂离子电池成组技术综述[J].船电技术,2020,40(4):30-34.
- [4]MENG H,LI YA.Review on prognostics and health management(PHM)methods of lithium-ionbatteries[J].Renewable and Sustainable Energy Reviews,2019,116:1094-1105.
- [5]BAEK K W,HONG E S,CHA S W.Capacity fade modeling of a Lithium-ion battery for electric vehicles[J].International Journal of Automotive Technology,2015,16(2):309-315.
- [6]王帅,韩伟,陈黎飞,等.锂离子电池健康管理问题研究综述[J].电源技术,2020,44(6):920-923.
- [7]TIAN H X,QIN P L,LI K,et al.A review of the state of health for lithium-ion batteries:Research status and suggestions[J].Journal of Cleaner Production,2020,261(1):120813
- [8]胡晓亚,郭永芳,张若可.锂离子电池健康状态估计方法研究综述[J/OL].电源学报:1-13[2021-03-17].http://kns.cnki.net/kcms/detail/12.1420.TM.20200604.1658.032.html.
- [9]陈翌,白云飞,何瑛.数据驱动的锂电池健康状态估算方法比较[J].储能科学与技术,2019,8(6):1204-1210.
- [10]YIDAL C,MALYSZ P,KOLLMEYER P,et al.Machine learning applied to electrified vehicle battery state of charge and state of health estimation:state of the art[J].IEEE Access,2020,8:52796-52814.
- [11]ATALAY S,SHEIKH M,MARIANI A,et al.Theo ry of battery ageing in a lithium-ion battery:Capacity fade,nonlinear ageing and lifetime prediction[J].Journal of Power Sources,2020:478.
- [12]吴铁洲,刘思哲,张晓星,等.基于FA-BP神经网络的锂离子电池SOH估算[J].电池,2021,51(1):21-25.
- [13]姚芳,田家益,黄凯.锂电池组健康状态计算方法综述[J].电源技术,2018,42(1):135-138.
- [14]吴盛军,袁晓冬,徐青山,等.锂离子电池健康状态评估综述[J].电源技术,2017,41(12):1788-1791.
- [15]ZHENG L,ZHU J,LU D C,et al.Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J].Energy,2018,150:759-769.
- [16]KALOGINNIS T,STROE I,NYBORG J,et al.Incremental capacity analysis of a lithium-ion battery pack for different charging rates[J].ECS Transactions,2017,77(11):403-411.
- [17]BERECIBAR M,GARMENDIA M,GANDIAGA I,et al.State of health estimation algorithm of LiFePO4battery packs based on differential voltage curves for battery management system application[J].Energy,2016,103:784-796.
- [18]MERLA Y,WU B,YUFT V,et al.Novel application of differential thermal voltammetry as an indepth state-ofhealth diagnosis method for lithium-ion batteries[J].Power Sources,2016,307:308-319.
- [19]JIANG Y,JIANG J,ZHANG C,et al.State of health estimation of second-life LiFePO4batteries for energy storage applications[J].Journal of Cleaner Production,2018,205:754-762.
- [20]SEVERSON K A,ATTIA P M,JIN N,et al.Data-driven prediction of battery cycle life before capacity degradation[J].Nature Energy,2019,4:383-391.
- [21]陈峥,顾青峰,沈世全,等.基于健康特征提取和PSORBF神经网络的锂离子电池健康状态预测[J].昆明理工大学学报(自然科学版),2020,45(6):92-103.
- [22]SEN S,SADOUGHI M,CHEN X Y,et al.A deep learning method for online capacity estimation of lithium-ion batteries[J].Journal of Energy Storage,2019,25:1008-1017.
- [23]GAE-WON Y,SANGDO P,DUKJIN O.Real-time stateof-health estimation for electric vehicle batteries:a datadriven approach[J].Applied Energy,2016,176:92-103.
- [24]MADSEN H.Time series analysis[M].Chapma&Hall/CRC,Boca Raton,FL,2007.
- [25]CHUN L,JAVIER C,FANG Y,et al.Battery state of health modeling and remaining useful life prediction through time series model[J].Applied Energy,2020:275.
- [26]程自立.纯电动汽车锂离子动力电池SOH估算方法研究[D].重庆:重庆邮电大学,2020.
- [27]ZHOU Y,HUANG M.Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J].Microelectron Reliability,2016,65:265-273.
- [28]HUSSEIN,ALA A.Capacity fade estimation inelectric vehi cle li-ion batteries using artificial neural networks[J].IEEE Transactions on Industry Applications,2015(3):2321-2330.
- [29]徐元中,曹翰林,吴铁洲.基于SA-BP神经网络算法的电池SOH预测[J].电源技术,2020,44(3):341-345.
- [30]张少宇,伍春晖,熊文渊.采用门控循环神经网络估计锂离子电池健康状态[J].红外与激光工程,2021,50(2):236-243.
- [31]ZHANG Y,XIONG R,HE H.Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J].IEEE Transactions on Vehicular Technology,2018,67:5695-5705.
- [32]李琳.锂离子电池荷电状态及健康状态估计研究[D].北京:北京林业大学,2020.
- [33]ZHAO Q,QIN X,ZHAO H,et al.A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J].Microelectronics Reliability,2018,85:99-108
- [34]FENG H,SONG D.A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction[J].Journal of Energy Storage,2021,34:253-64.
- [35]LIU D,ZHOU J,PAN D,et al.Lithium-ion battery re main ing useful life estimation with an optimized relevance vec tor machine algorithm with incremental learning[J].Measurement,2015,63:143-151.
- [36]RICHARDSON RR,OSBORNE MA,HOWEY DA.Gaussian process regression for forecasting battery state of health[J].Journal of Power Sources,2017,357:209-219.
- [37]刘健.基于高斯过程回归的锂离子电池剩余寿命预测研究[D].上海:上海交通大学,2019.
- [38]CHEN C,PECHT M.Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J].Journal of Power Sources,2021:481.
- [39]靳皓晴.基于物理-数据融合模型的锂离子电池荷电状态估计[D].兰州:兰州理工大学,2020.
- 锂离子电池
- 退化
- 健康状态评估
- 剩余寿命预测
- 数据驱动
lithium-ion battery - degradation
- state of health estimation
- residual life prediction
- data-driven