深度神经网络在配电网公变短期负荷预测中的应用研究Application of Deep Neural Network in Short-term Load Prediction of Public Transformer of Power Distribution Network
黄宇腾,韩翊,赖尚栋
HUANG Yuteng,HAN Yi,LAI Shangdong
摘要(Abstract):
精准的负荷预测关系着电力系统安全、经济和可靠运行,短期负荷预测一直是电力系统的重要研究方向之一。结合深度学习理论,基于MXNet深度学习框架,采用深度神经网络算法预测配电网公变短期负荷,考虑负荷自身历史运行状态、气象因素、变压器属性、电力用户特征等多重因素影响,对传统电力负荷预测进行了创新和探索,并通过在某省的实际应用效果表明,基于MXNet框架的深度神经网络模型训练效率良好。基于深度神经网络的短期负荷预测模型有很强的泛化能力与通用性,为不同地区、不同类型的公变建立个性化的预测模型提供了可行方法。模型部署于阿里云大数据平台,基于阿里云大数据实现了配电网公变日负荷的实时预测。
Power load prediction accuracy concerns operation safety, economy and reliability, and short-term load forecasting is one of the important research directions of power system. In combination with deep learning theory and based on MXNet deep learning framework, deep neural network algorithm is adopted to predict short-term load of public transformer of distribution networks; in consideration of historic operation status, meteorological factors, transformer features and characteristics of power consumers, the traditional power load prediction is innovated and explored. It is demonstrated through the application in a province that the deep neural network model based on MXNet framework is efficient in training. The short-term load prediction model based on deep neural network is strongly capable of generalization and versatility, providing a feasible method for customized prediction model establishment for different types of public transformers in different areas. The model is deployed in a big data platform of Alibaba Cloud to predict daily load of public transformer based on big data of Alibaba cloud instantly.
关键词(KeyWords):
负荷预测;配电网公变;深度神经网络模型;MXNet;深度学习
load prediction;public transformer of distribution network;deep neural network model;MXNet;deep learning
基金项目(Foundation):
作者(Author):
黄宇腾,韩翊,赖尚栋
HUANG Yuteng,HAN Yi,LAI Shangdong
DOI: 10.19585/j.zjdl.201805001
参考文献(References):
- [1]廖旎焕,胡志宏,马莹莹,等.电力系统短期负荷预测方法综述[J].电力系统保护与控制,2011,39(1):147-152.
- [2]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004(17):1-11.
- [3]胡志亮.公变负荷预测方法研究[D].广州:华南理工大学,2013.
- [4]沈沉,秦建,盛万兴,等.基于小波聚类的配变短期负荷预测方法研究[J].电网技术,2016,40(2):521-526.
- [5]刘健,勾新鹏,徐精求,等.基于区域负荷的配电网超短期负荷预测[J].电力系统自动化,2003(19):34-37.
- [6]苏庆新.一种配电网超短期负荷预测的神经网络方法[D].曲阜:曲阜师范大学,2002.
- [7]闫冬,赵建国.一种实用化的配电网超短期负荷预测方法[J].电力系统自动化,2001(22):45-48.
- [8]杜莉,张建军.神经网络在电力负荷预测中的应用研究[J].计算机仿真,2011(10):297-300.
- [9]蒋喆.支持向量机在电力负荷预测中的应用研究[J].计算机仿真,2010(8):282-285.
- [10]庞清乐.基于粗糙集理论的神经网络预测算法及其在短期负荷预测中的应用[J].电网技术,2010,34(12):168-173.
- [11]周志华.机器学习[M].北京:清华大学出版社,2016.
- [12]山世光,阚美娜,刘昕,等.深度学习:多层神经网络的复兴与变革[J].科技导报,2016(14):60-70.
- [13]庞荣.深度神经网络算法研究及应用[D].成都:西南交通大学,2016.
- [14]康重庆,周安石,王鹏,等.短期负荷预测中实时气象因素的影响分析及其处理策略[J].电网技术,2006,30(1):1-10.
- [15]DIN,GHULAM MOHI UD,ANGELOS K MARNERIDES.Short term power load forecasting using Deep Neural Networks[C].Computing,Networking and Communications(IC-NC),2017 International Conference on IEEE,2017.
- [16]HOSEIN,STEFAN,PATRICK HOSEIN.Load Forecasting using Deep Neural Networks[C].Power&Energy Society Innovative Smart Grid Technologies Conference(ISGT),IEEE,2017.
- [17]张魁,王亚明,刘明,等.基于大数据及智能算法的连云港电量负荷预测研究[J].江苏电机工程,2016,35(3):49-52.
- [18]樊唯钦,张伟,李勇钢,等.基于改进人体舒适指数的微电网短期负荷预测[J].广东电力,2017,30(4):137-142.
- [19]刘晓菲,商立群.非线性主成分分析和RBF神经网络的电力系统负荷预测[J].电网与清洁能源,2016,32(1):47-52.
- [20]万强,王清亮,王睿豪,等.基于支持向量机的某地区电网短期电力负荷预测[J].电网与清洁能源,2016,32(12):14-20.