火电厂SCR烟气脱硝系统建模与喷氨量最优控制Modeling of SCR Flue Gas Denitration System and Optimal Control of Spraying Ammonia Flow in Thermal Power Plant
周鑫,吴佳
ZHOU Xin,WU Jia
摘要(Abstract):
SCR(选择性催化还原)是发电厂目前普遍采用的烟气脱硝方法,脱硝系统的喷氨量不仅影响烟气脱硝的效率,过量喷氨也会造成氨逃逸率升高,导致环境的二次污染。SCR系统反应机理复杂,具有非线性、大惯性等特点,传统PID控制方法无法实现喷氨量的精确控制。将KPLS(核偏最小二乘方法)与GA(遗传算法)结合,提出了GA-KPLS建模方法,并建立了SCR系统模型。仿真结果表明,模型具有较好的学习及泛化能力。将SCR模型应用于模型预测控制方法中,实时计算最优喷氨量,实现了对喷氨量的精确控制。实验结果表明,此方法与传统PID控制方法相比,显著提高了脱硝率,同时降低了氨逃逸率。
Selective catalytic reduction(SCR) method is usually used for flue gas denitration in thermal power plant. Spraying ammonia flow of denitration system can affect the efficiency of flue gas denitration And excess ammonia spraying results in higher rates of ammonia escape which cause secondary pollution of the environment. Reaction mechanism of SCR system is very complex and it has the characteristics of nonlinearity and large inertia. Therefore, it is difficult for the traditional PID control methods to achieve precise control of the amount of ammonia injection. Combining the kernel partial least squares(KPLS) and genetic algorithm(GA), GA-KPLS modeling method is proposed and the SCR system model is established. The simulation results show that the learning and generalization abilities of the model are both better. In order to precisely control the amount of ammonia spraying, model predictive control method is used to calculate the real-time optimal amount of ammonia spraying. Experimental results show that compared with traditional PID control this method significantly improves the denitration rate as well as reduces the ammonia escape rate.
关键词(KeyWords):
选择性催化还原;烟气脱硝;核偏最小二乘;遗传算法;最优控制
selective catalytic reduction;flue gas denitration;kernel partial least squares;genetic algorithm;optimal control
基金项目(Foundation):
作者(Author):
周鑫,吴佳
ZHOU Xin,WU Jia
DOI: 10.19585/j.zjdl.2015.11.005
参考文献(References):
- [1]王春林,周昊,李国能,等.基于遗传算法和支持向量机的低NOX燃烧优化[J].中国电机工程学报,2007(11):40-44.
- [2]周洪煜.超临界锅炉烟气脱硝喷氨量混结构-径向基函数神经网络最优控制[J].中国电机工程学报,2011(5):108-113.
- [3]阎纲.基于最小二乘支持向量机的铝电解过程建模与控制研究[D].长沙:中南大学,2012.
- [4]杜振,钱徐悦,何胜,等.燃煤电厂烟气SCR脱硝成本分析与优化[J].中国电力,2013,46(10):124-128.
- [5]梁川,沈越.1000MW机组SCR烟气脱硝系统优化运行[J].中国电力,2012,45(1):41-44.
- [6]董建勋,王松岭,李永华,等.选择性催化还原烟气脱硝过程数学模拟研究[J].热能动力工程,2007,22(5):569-573.
- [7]周响球,杨晨.选择性催化还原脱硝反应器数学模型及仿真[J].重庆大学学报:自然科学版,2007,30(6):39-43.
- [8]曹志勇,谭城军,李建中,等.燃煤锅炉SCR烟气脱硝系统喷氨优化调整试验[J].中国电力,2011,44(11):55-58.
- [9]NOVA I,LIETTI L,TRONCONI E,et al.Transient response method applied to the kinetic analysis of the DeNOX-SCR reaction[J].Chemical Engineering Science,2001,56(4):1229-1237.
- [10]赵乾.SCR烟气脱硝系统模拟优化及喷氨量最优控制[D].重庆:重庆大学,2012.
- [11]LIETTI L,NOVA I,CAMURRI S,et al.Dynamics of the SCR-De NOXreaction by the transient-response method[J].Aiche Journal,1997,43(10):2559-2570.
- [12]周荔丹.广义预测控制算法及应用研究[D].长沙:湖南大学,2002.
- [13]黄山,蒋鹭,王天才,等.神经网络与遗传算法结合的球团竖炉燃烧优化[J].东南大学学报:自然科学版,2012,42(1):88-93.
- [14]董建勋.燃煤电厂SCR烟气脱硝试验研究及数学模型建立[D].保定:华北电力大学,2007.
- [15]穆朝絮,张瑞民,孙长银.基于粒子群优化的非线性系统最小二乘支持向量机预测控制方法[J].控制理论与应用,2010,27(2):164-168.
- 选择性催化还原
- 烟气脱硝
- 核偏最小二乘
- 遗传算法
- 最优控制
selective catalytic reduction - flue gas denitration
- kernel partial least squares
- genetic algorithm
- optimal control