浙江电力

2015, v.34;No.228(04) 54-56+72

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于多分类支持向量机的风电机组故障诊断
Diagnosis on Wind Turbine Faults Based on Multi-classification Support Vector Machine

徐开,郑小霞
XU Kai,ZHENG Xiaoxia

摘要(Abstract):

提出了综合考虑风电机组转速及输入/输出轴水平和垂直方向振动信号,对故障数据依照转动周期分组后分别对每个周期的时域指标进行提取,而后基于SVM(支持向量机)对提取后的数据进行4种状态下故障分类的方法。测试结果表明,该方法简单有效,具有很好的故障识别能力,适合风电机组齿轮箱故障诊断。
The paper introduce a fault classification method. In this method, rotation speed of wind turbine and vibration signal in horizontal and vertical direction of input and output shafts are taken into consideration;in accordance with rotation period, the fault data is grouped and time-domain indexes in each period are extracted, after which faults in four conditions are classified on the basis of extracted data of SVM(support vector machine). The test result show that the method is simple and effective, and it can identify faults and is suitable for diagnosis of faults in gear boxes of wind turbine generating units.

关键词(KeyWords): 多分类;支持向量机;风电机组;故障诊断
multi-classification;support vector machine(SVM);wind turbine generating units;fault diagnosis

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 徐开,郑小霞
XU Kai,ZHENG Xiaoxia

DOI: 10.19585/j.zjdl.2015.04.015

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享