基于速度曲线的高压旧电缆回收装置精准控制策略研究Research on Accurate Control Strategy of Waste High-voltage Cable Recovery Device Based on Velocity Curve
郑飞勇,胡向红,潘明珠,王华昕,黄兆
ZHENG Feiyong,HU Xianghong,PAN Mingzhu,WANG Huaxin,HUANG Zhao
摘要(Abstract):
电力工程一般都采用人工和机械混合的敷设方法对大截面、长距离的110 kV及以上高压电力电缆进行敷设,但总体工作效率不高。本文研发了一套高压旧电缆自动化回收装置解决施工安全可靠快速问题。回收过程中牵引力特性呈现从大到小特点,回收速度定速运行在初始阶段有可能会对电缆有一定破坏作用。为了有效地抑制伺服电机启动时对电缆的冲击,本文提出了基于速度运行曲线的回收装置控制策略。该策略优点是速度随着牵引力柔性变化,改变了电缆恒速控制的传统模式。本文将实际常见的回收场景进行等效,搭建了PMSM(伺服永磁同步电机)矢量控制模型,研究了不同场景的速度曲线控制方式,结合现场条件开展了型式试验测试,验证了控制策略有效性。
Manual and mechanical methods are employed to lay large cross-section and long-distance highvoltage cables of 110 kV and above levels in electric power projects, but the overall work efficiency is not high. The paper introduces a waste high-voltage cable automatic recovery device to solve the problem of safe,reliable and fast construction. In the recycling process, the characteristics of the recycling traction show from large to small, and recovery speed runs at a constant speed may have a destructive effect on the cable in the initial stage. To effectively suppress the impact on the cable when the servo motor starts, the paper proposes a control strategy for the recovery device based on the velocity running curve. The advantage of this strategy is that the speed changes with the flexibility of the traction force, which changes the traditional mode of cable constant speed control. In the paper, the actual common recovery scenes were equivalent, the servo permanent magnet synchronous motor vector control model was established, the velocity curve control modes of different scenes were studied, and the effectiveness of the control strategy is verified.
关键词(KeyWords):
高压旧电缆;回收装置;控制策略;场景等效
waste high-voltage cable;recovery device;control strategy;scene equivalence
基金项目(Foundation): 绍兴建元电力集团有限公司科技项目(SX-JT-KJ-2019-04)
作者(Author):
郑飞勇,胡向红,潘明珠,王华昕,黄兆
ZHENG Feiyong,HU Xianghong,PAN Mingzhu,WANG Huaxin,HUANG Zhao
DOI: 10.19585/j.zjdl.202106013
参考文献(References):
- [1]何光华,王永强.高压电力电缆高落差敷设技术[M].北京:中国电力出版社,2018.
- [2]郭海红.电力工程中电缆施工问题探讨[J].科技创新与应用,2012(9):108.
- [3]夏斯权,周亦敏,杨一波,等.步进电机闭环控制系统的研究与应用[J].机电工程,2017,34(12):1446-1450.
- [4]李晓辉,邬义杰,冷洪滨.S曲线加减速控制新方法的研究[J].组合机床与自动化加工技术,2007(10):50-53.
- [5]瞿敏,陈伟元,王鹏.步进电动机细分驱动建模与运行曲线优化设计[J].微特电机,2019,47(9):27-30.
- [6]周黎,杨世洪,高晓东.步进电机控制系统建模及运行曲线仿真[J].电机与控制学报,2011,15(1):20-25.
- [7]张汉杰,王锡仲,朱学莉.现代电梯控制技术[M].哈尔滨:哈尔滨工业大学出版社,1996.
- [8]张福恩,吴乃优,张金陵,等.交流调速电梯原理、设计及安装维修[M].北京:机械工业出版社,2000.
- [9]高国贤,马福军.电梯正弦运行速度曲线的分析与设计[J].自动化技术与应用,2007(11):19-21.
- [10]聂沐晗.电梯用PMSM控制系统研究[D].北京:北京建筑大学,2015.
- [11]HEWLETT P.Optimal strategies for the control of a train[J].Automatica,1996,32(4):519-532.
- [12]LIU R R,GOLOVITCHER I M.Energy-efficient operation of rail vehicles[J].Transportation Research Part A:Policy and Practice,2003,37(10):917-932.
- [13]许立,王长林.基于遗传算法列车自动运行速度曲线的优化[J].铁路计算机应用,2013,22(10):46-49.
- [14]王娟.基于迭代学习控制的列车速度曲线跟踪研究[D].兰州:兰州交通大学,2014.
- [15]王小磊.永磁同步电机伺服系统设计与实现[D].哈尔滨:哈尔滨工业大学,2011.
- [16]寇宝泉,程树康.交流伺服电机及其控制[M].北京:机械工业出版社,2008.
- [17]汤广福,温家良,贺之渊,等.大功率电力电子装置等效试验方法及其在电力系统中的应用[J].中国电机工程学报,2008,28(36):1-9.