浙江电力

2019, v.38;No.275(03) 14-19

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于优化型SVM的高压断路器故障诊断方法研究
Research on Fault Diagnosis of High Voltage Circuit Breaker Based on Optimized SVM

周建平,李聪,万书亭,杨晓红
ZHOU Jianping,LI Cong,WAN Shuting,YANG Xiaohong

摘要(Abstract):

为准确评估高压断路器的运行状态,提出了一种基于分合闸线圈电流的断路器故障诊断方法。首先提取断路器分合闸线圈电流时间和电流值,并将其作为局部特征;然后对电流信号数据求取均值、标准差、峭度以及能量值并作为全局特征,由局部特征和全局特征组成综合特征;再利用PCA(主分量分析)法对特征矩阵进行降维处理,获得主分量特征;最后构建SVM(支持向量机)的训练样本集,获得SVM决策函数,实现断路器运行状态分类。利用该方法对断路器4种运行状态进行试验分析,结果表明该方法能够有效识别断路器不同故障状态。
In order to accurately evaluate the operation status of high voltage circuit breaker, a fault diagnosis method based on tripping and closing coil current is proposed. Firstly, the time and amplitude of the circuit breaker coil current are extracted as the local feature, and the mean, standard deviation, kurtosis and energy value of the current signal data are taken as the global characteristics to form comprehensive features. Then the principal component analysis(PCA) is used to reduce the dimension of the feature matrix, and the feature of the main component is obtained. Finally, the training sample set of SVM(support vector machine) is constructed to obtain decision function of SVM to classify the operation state of circuit breaker. Four different operating states of circuit breaker are tested and analyzed by this method. The results show that this method can accurately identify different fault states of circuit breaker.

关键词(KeyWords): 主分量分析;支持向量机;高压断路器;分合闸线圈电流;故障诊断
principal component analysis;support vector machine;high-voltage circuit breaker;tripping and closing coils current;fault diagnosis

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(51777075);; 国网浙江省电力有限公司科技项目(5211MR170004)

作者(Author): 周建平,李聪,万书亭,杨晓红
ZHOU Jianping,LI Cong,WAN Shuting,YANG Xiaohong

DOI: 10.19585/j.zjdl.201903003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享