基于视频识别的电力占道施工场景交通拥堵检测Detection of traffic congestion in road-occupied electric power construction based on video recognition
张科,吴嘉琪,陈威成,闫云凤,齐冬莲
ZHANG Ke,WU Jiaqi,CHEN Weicheng,YAN Yunfeng,QI Donglian
摘要(Abstract):
目前对道路交通拥堵的检测多采用人为监控或传感器监测的方法,而电力占道施工场景往往缺乏此类检测设备。为满足该场景下拥堵检测的低设备依赖性和高准确性的需求,提出一种利用视频数据的检测方法,采用神经网络对视频数据进行特征提取并判断是否造成交通拥堵。为了解决电力占道施工场景下数据较少的问题,利用通用交通场景数据集提升网络的泛化性,采用域对抗迁移网络自适应学习方法弱化两种数据域在特征提取网络中的差异性表现。为了减少人工标注工作量,提出一种半监督学习方式。实验结果表明,所提方法在电力占道施工场景道路拥堵检测识别任务中达到了93.2%的准确率,具有较高的应用价值。
The detection of traffic congestion is now realized mostly by human monitoring and sensor monitoring.However, such detection devices are deficient in road-occupied electric power construction. To meet the needs of low equipment dependency and high accuracy of congestion detection in the road-occupied electric power construction, a detection method based on video data is proposed, which uses neural networks to extract features from video data and determine whether there is traffic congestion. In response to data deficiency in the road-occupied electric power construction, the generalization of the network is improved by making full use of the generic traffic scene dataset, and the adaptive learning method based on domain adversarial neural networks(DANN) is used to reduce the differential performance of two data domains in the feature extraction network. Semi-supervised learning(SSL) is proposed to reduce the manual labeling workload. The experimental results show that the proposed method can achieve an accuracy of 93.2% in traffic congestion detection and recognition in road-occupied electric power construction and has high application value.
关键词(KeyWords):
电力占道施工;拥堵检测;视频识别;域适应学习;半监督训练
road-occupied power construction;congestion detection;video recognition;domain adaptation;semisupervised training
基金项目(Foundation): 国家自然科学基金项目(U1909201);; 浙江省自然科学基金探索项目(Q21F030038);; 浙江省科技“尖兵计划”项目(2022C01056)
作者(Author):
张科,吴嘉琪,陈威成,闫云凤,齐冬莲
ZHANG Ke,WU Jiaqi,CHEN Weicheng,YAN Yunfeng,QI Donglian
DOI: 10.19585/j.zjdl.202305012
参考文献(References):
- [1]徐波,魏利军.基于视频分析技术的违章作业智能监控系统应用研究[J].中国安全生产科学技术,2014,10(增刊1):79-83.XU Bo,WEI Lijun. Study on application of intelligent monitoring system for work against regulations based on video analysis technology[J]. Journal of Safety Science and Technology,2014,10(S1):79-83.
- [2]徐长福,陶风波,龚雁峰,等.基于谷歌眼镜的智能变电站实时数据展示与智能分析技术[J].电力工程技术,2017,36(1):91-94.XU Changfu,TAO Fengbo,GONG Yanfeng,et al.Realtime data demonstration and intelligent analysis technology for smart substation inspection based on google glass[J].Electric Power Engineering Technology,2017,36(1):91-94.
- [3]吕继伟.基于泛在电力物联网的换流站在线监测系统优化综述[J].电力工程技术,2019,38(6):9-15.LYU Jiwei.Optimization survey of online monitoring system for converter station based on ubiquitous power IoT[J].Electric Power Engineering Technology,2019,38(6):9-15.
- [4]陈汐,韩译锋,闫云凤,等.目标物智能跟踪与分割融合算法及其在变电站视频监控中的应用[J].中国电机工程学报,2020,40(23):7578-7587.CHEN Xi,HAN Yifeng,YAN Yunfeng,et al.A unified algorithm for object tracking and segmentation and its application on intelligent video surveillance for transformer substation[J].Proceedings of the CSEE,2020,40(23):7578-7587.
- [5] KAMIJO S,MATSUSHITA Y,IKEUCHI K,et al.Traffic monitoring and accident detection at intersections[J].IEEE Transactions on Intelligent Transportation Systems,2000,1(2):108-118.
- [6] MEDIONI G,COHEN I,BRéMOND F,et al.Event detection and analysis from video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(8):873-889.
- [7] PAYNE H J,HELFENBEIN E D,KNOBEL H C.Development and testing of incident detection algorithms.Vol.2,research methodology and detailed results[R].[S.l.]:Federal Highway Administration Office of Research and Development,1976.
- [8]刘伟铭.高速公路系统控制方法[M].北京:人民交通出版社,1998.
- [9] LEVIN M,KRAUSE G M.Incident detection:A Bayesian approach[J]. Transportation Research Record,1978,682:52-58.
- [10] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston,MA,USA:IEEE,2015:1-9.
- [11] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:770-778.
- [12] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV).Santiago,Chile:IEEE,2016:1440-1448.
- [13] HE K M,GKIOXARI G,DOLLáR P,et al. Mask RCNN[C]//2017 IEEE International Conference on Computer Vision(ICCV). Venice,Italy:IEEE,2017:2980-2988.
- [14] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014:arXiv:1409.1556. https://arxiv. org/abs/1409.1556.
- [15] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,NV,USA:IEEE,2016:779-788.
- [16] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90.
- [17] LIN T Y,MAIRE M,BELONGIE S,et al. Microsoft COCO:common objects in context[M]//Computer Vision-ECCV 2014.Cham:Springer International Publishing,2014:740-755.
- [18] KURNIAWAN J,SYAHRA S G S,DEWA C K,et al.Traffic congestion detection:learning from CCTV monitoring images using convolutional neural network[J].Procedia Computer Science,2018,144:291-297.
- [19] CHAKRABORTY P,ADU-GYAMFI Y O,PODDAR S,et al.Traffic congestion detection from camera images using deep convolution neural networks[J].Transportation Research Record:Journal of the Transportation Research Board,2018,2672(45):222-231.
- [20] WANG Q,WAN J,YUAN Y. Locality constraint distance metric learning for traffic congestion detection[J].Pattern Recognition,2018,75:272-281.
- [21] GANIN Y,USTINOVA E,AJAKAN H,et al.Domainadversarial training of neural networks[M]//Domain Adaptation in Computer Vision Applications.Cham:Springer International Publishing,2017:189-209.
- [22] STOPHER P R.Reducing road congestion:a reality check[J].Transport Policy,2004,11(2):117-131.
- [23] HARA K,KATAOKA H,SATOH Y.Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE,2018:6546-6555.
- [24] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the27th International Conference on Neural Information Processing Systems-Volume 2.Montreal,Canada.New York:ACM,2014:2672-2680.
- [25] DEVLIN J,CHANG M,LEE K,et al. BERT:pretraining of deep bidirectional transformers for language understanding[EB/OL]. 2018:arXiv:1810.04805. https://arxiv.org/abs/1810.04805.
- 电力占道施工
- 拥堵检测
- 视频识别
- 域适应学习
- 半监督训练
road-occupied power construction - congestion detection
- video recognition
- domain adaptation
- semisupervised training