基于余弦相似度和TSO-BP的短期光伏预测方法A short-term PV power forecasting method based on cosine similarity and TSO-BP neural network
陆毅,薛枫,唐小波,杨坤,李益,马刚
LU Yi,XUE Feng,TANG Xiaobo,YANG Kun,LI Yi,MA Gang
摘要(Abstract):
对光伏出力的精准预测在配电网安全稳定运行中起着至关重要的作用。因此,提出了一种基于余弦相似度和TSO-BP(金枪鱼群优化-反向传播)神经网络的短期光伏预测方法。首先,利用余弦相似度算法筛选出与预测日具有强相似度的历史数据作为训练样本;然后,采用TSO算法寻找BP神经网络的最优初始权值与阈值,训练TSO-BP短期光伏预测模型;最后,利用TSO-BP模型分别预测平缓天气与波动天气下的光伏出力。仿真结果表明:在平稳和波动两种不同天气情况下,该方法相较于传统预测方法精度更高。
Accurate photovoltaic(PV) output power forecasting plays a crucial role in ensuring the secure and stable operation of distribution networks. In light of this, the paper proposes a short-term PV power forecasting method using cosine similarity and a hybrid TSO(tuna swarm optimization) and BP(back propagation) neural network. Firstly, the cosine similarity algorithm is utilized to identify historical data with strong resemblance to the forecast day as training samples. Subsequently, the TSO algorithm is employed to search for optimal initial weights and thresholds for the BP neural network. The TSO-BP model is then trained for short-term PV power forecasting. Finally, the TSO-BP model is applied to predict PV output power under both stable and fluctuating weather conditions. Simulation results indicate that, the proposed method, compared to traditional forecasting methods, achieves higher accuracy in predictions for both steady and fluctuating weather scenarios.
关键词(KeyWords):
光伏预测;皮尔逊相关系数;余弦相似度;金枪鱼群优化算法;反向传播神经网络
PV power forecasting;Pearson correlation coefficient;cosine similarity;TSO;BP neural network
基金项目(Foundation): 江苏省碳达峰碳中和科技创新专项资金(产业前瞻与关键核心技术攻关)重点项目(BE2022003)
作者(Author):
陆毅,薛枫,唐小波,杨坤,李益,马刚
LU Yi,XUE Feng,TANG Xiaobo,YANG Kun,LI Yi,MA Gang
DOI: 10.19585/j.zjdl.202406003
参考文献(References):
- [1]龚莺飞,鲁宗相,乔颖,等.光伏功率预测技术[J].电力系统自动化,2016,40(4):140-151.GONG Yingfei,LU Zongxiang,QIAO Ying,et al. An overview of photovoltaic energy system output forecasting technology[J]. Automation of Electric Power Systems,2016,40(4):140-151.
- [2]潘旭东,黄豫,唐金锐,等.新能源发电发展的影响因素分析及前景展望[J].智慧电力,2019,47(11):41-47.PAN Xudong,HUANG Yu,TANG Jinrui,et al.Influencing factors and prospects for development of renewable energy power generation[J]. Smart Power,2019,47(11):41-47.
- [3]陈宇星,梁芙蓉,尤炜,等.含分布式光伏的配电网模型预测控制优化方法[J].电力工程技术,2023,42(6):100-109.CHEN Yuxing,LIANG Furong,YOU Wei,et al.Model predictive control optimization method for distribution network containing distributed photovoltaics[J]. Electric Power Engineering Technology,2023,42(6):100-109.
- [4] MELLIT A,PAVAN A M.A 24 h forecast of solar irradiance using artificial neural network:application for performance prediction of a grid-connected PV plant at Trieste,Italy[J].Solar Energy,2010,84(5):807-821.
- [5] CORNARO C,PIERRO M,BUCCI F.Master optimization process based on neural networks ensemble for 24 h solar irradiance forecast[J].Solar Energy,2015,111:297-312.
- [6] PAN M Z,LI C,GAO R,et al.Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization[J].Journal of Cleaner Production,2020,277:123948.
- [7] ESEYE A T,ZHANG J H,ZHENG D H. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information[J]. Renewable Energy,2018,118:357-367.
- [8]刘志超,袁三男,唐万成.基于BLSTM-随机森林的短期光伏发电输出功率预测[J].电源技术,2021,45(4):495-498.LIU Zhichao,YUAN Sannan,TANG Wancheng.Output power prediction of short-term photovoltaic power generation based on BLSTM-random forest[J].Chinese Journal of Power Sources,2021,45(4):495-498.
- [9]荆博,谭伦农,钱政,等.光伏发电短期预测研究进展综述[J].电测与仪表,2017,54(12):1-6.JING Bo,TAN Lunnong,QIAN Zheng,et al. An overview of research progress of short-term photovoltaic forecasts[J]. Electrical Measurement&Instrumentation,2017,54(12):1-6.
- [10]宋绍剑,李博涵.基于LSTM网络的光伏发电功率短期预测方法的研究[J].可再生能源,2021,39(5):594-602.SONG Shaojian,LI Bohan.Short-term forecasting method of photovoltaic power based on LSTM[J].Renewable Energy Resources,2021,39(5):594-602.
- [11]吉锌格,李慧,刘思嘉,等.基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制,2020,48(7):50-57.JI Xinge,LI Hui,LIU Sijia,et al.Short-term photovoltaic power forecasting based on MIE-LSTM[J]. Power System Protection and Control,2020,48(7):50-57.
- [12]丁明,王磊,毕锐.基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J].电力系统保护与控制,2012,40(11):93-99.DING Ming,WANG Lei,BI Rui.A short-term prediction model to forecast output power of photovoltaic system based on improved BP neural network[J].Power System Protection and Control,2012,40(11):93-99.
- [13]左远龙,黄玉水,杨晓辉,等.基于PFA-MBAS-BP神经网络模型的光伏发电短期预测[J].电力系统保护与控制,2020,48(15):84-91.ZUO Yuanlong,HUANG Yushui,YANG Xiaohui,et al.Short-term prediction of photovoltaic power generation based on a PFA-MBAS-BP neural network model[J].Power System Protection and Control,2020,48(15):84-91.
- [14]陈文进,朱峰,张童彦,等.基于AFSA-BP神经网络的光伏功率预测方法[J].浙江电力,2022,41(4):7-13.CHEN Wenjin,ZHU Feng,ZHANG Tongyan,et al. A photovoltaic power prediction method based on AFSA-BP neural network[J].Zhejiang Electric Power,2022,41(4):7-13.
- [15]周新茂,郑焮元,于正鑫,等.基于相似日理论和LCSSABP的短期光伏发电功率预测[J].电网与清洁能源,2022,38(11):88-97.ZHOU Xinmao,ZHENG Xinyuan,YU Zhengxin,et al.Short-term photovoltaic power prediction based on similarity day theory and LCSSA-BP[J]. Power System and Clean Energy,2022,38(11):88-97.
- [16]乔路丽,方诗琦,赵庭锐,等.基于相似日和IGA-BP的光伏发电功率预测方法研究[J].电网与清洁能源,2022,38(1):128-134.QIAO Luli,FANG Shiqi,ZHAO Tingrui,et al.A study on the forecasting method of photovoltaic power generation based on similar day and IGA-BP[J].Power System and Clean Energy,2022,38(1):128-134.
- [17]孙荣富,王隆扬,王玉林,等.基于数字孪生的光伏发电功率超短期预测[J].电网技术,2021,45(4):1258-1264.SUN Rongfu,WANG Longyang,WANG Yulin,et al.Ultra-short-term prediction of photovoltaic power generation based on digital twins[J].Power System Technology,2021,45(4):1258-1264.
- [18]文爽,马逸骋,孙志强.基于GWO-EEMD-BP神经网络的光伏发电功率短期预测[J].中南大学学报(自然科学版),2022,53(12):4799-4808.WEN Shuang,MA Yicheng,SUN Zhiqiang. Short-term prediction of photovoltaic power based on GWO-EEMDBP[J].Journal of Central South University(Science and Technology),2022,53(12):4799-4808.
- [19]李涵,李文敬.混合策略改进的金枪鱼群优化算法[J].广西科学,2023,30(1):208-218.LI Han,LI Wenjing.Improved tuna swarm optimization algorithm based on hybrid strategy[J]. Guangxi Sciences,2023,30(1):208-218.
- [20] XIE L,HAN T,ZHOU H,et al.Tuna swarm optimization:a novel swarm-based metaheuristic algorithm for global optimization[J]. Computational Intelligence and Neuroscience,2021,2021:9210050.
- [21]贾凌云,云斯宁,赵泽妮,等.神经网络短期光伏发电预测的应用研究进展[J].太阳能学报,2022,43(12):88-97.JIA Lingyun,YUN Sining,ZHAO Zeni,et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J].Acta Energiae Solaris Sinica,2022,43(12):88-97.