浙江电力

2024, v.43;No.338(06) 22-30

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于余弦相似度和TSO-BP的短期光伏预测方法
A short-term PV power forecasting method based on cosine similarity and TSO-BP neural network

陆毅,薛枫,唐小波,杨坤,李益,马刚
LU Yi,XUE Feng,TANG Xiaobo,YANG Kun,LI Yi,MA Gang

摘要(Abstract):

对光伏出力的精准预测在配电网安全稳定运行中起着至关重要的作用。因此,提出了一种基于余弦相似度和TSO-BP(金枪鱼群优化-反向传播)神经网络的短期光伏预测方法。首先,利用余弦相似度算法筛选出与预测日具有强相似度的历史数据作为训练样本;然后,采用TSO算法寻找BP神经网络的最优初始权值与阈值,训练TSO-BP短期光伏预测模型;最后,利用TSO-BP模型分别预测平缓天气与波动天气下的光伏出力。仿真结果表明:在平稳和波动两种不同天气情况下,该方法相较于传统预测方法精度更高。
Accurate photovoltaic(PV) output power forecasting plays a crucial role in ensuring the secure and stable operation of distribution networks. In light of this, the paper proposes a short-term PV power forecasting method using cosine similarity and a hybrid TSO(tuna swarm optimization) and BP(back propagation) neural network. Firstly, the cosine similarity algorithm is utilized to identify historical data with strong resemblance to the forecast day as training samples. Subsequently, the TSO algorithm is employed to search for optimal initial weights and thresholds for the BP neural network. The TSO-BP model is then trained for short-term PV power forecasting. Finally, the TSO-BP model is applied to predict PV output power under both stable and fluctuating weather conditions. Simulation results indicate that, the proposed method, compared to traditional forecasting methods, achieves higher accuracy in predictions for both steady and fluctuating weather scenarios.

关键词(KeyWords): 光伏预测;皮尔逊相关系数;余弦相似度;金枪鱼群优化算法;反向传播神经网络
PV power forecasting;Pearson correlation coefficient;cosine similarity;TSO;BP neural network

Abstract:

Keywords:

基金项目(Foundation): 江苏省碳达峰碳中和科技创新专项资金(产业前瞻与关键核心技术攻关)重点项目(BE2022003)

作者(Author): 陆毅,薛枫,唐小波,杨坤,李益,马刚
LU Yi,XUE Feng,TANG Xiaobo,YANG Kun,LI Yi,MA Gang

DOI: 10.19585/j.zjdl.202406003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享