考虑响应不确定性的电动汽车集群可调度容量评估方法An Estimation Method for Schedulable Capability of Aggregated Electric Vehicles Considering Response Uncertainty
王吉兴,余洋,米增强,蔡新雷
WANG Jixing,YU Yang,MI Zengqiang,CAI Xinlei
摘要(Abstract):
准确评估可调度容量是电动汽车集群参与辅助服务的前提,如何量化用户响应意愿是当前可调度容量评估中的难题。对此,提出考虑响应不确定性的电动汽车集群可调度容量评估方法。首先,采用sigmoid函数改进的一维云模型分别建立激励水平和充电时间裕度的用户不确定性响应模型,分析二者对用户响应行为的影响;然后,结合熵权法将两个因素予以综合考虑,建立反映用户响应意愿的二维云模型;最后,利用二维云模型修正传统蒙特卡洛模拟法得到的可调度容量。通过算例分析表明,所提方法能对用户响应不确定性进行正确有效量化,实现对电动汽车集群可调度容量的准确评估。
Accurate assessment of schedulable capacity is a prerequisite for AEVs(aggregated electric vehicles)to participate in auxiliary services,and how to quantify users′ willingness to respond is a challenge in schedulable capacity assessment. In this regard,a schedulable capacity assessment method for AEVs considering response uncertainty is proposed. Firstly,a one-dimensional cloud model based on an improved sigmoid function is used to establish the user uncertainty response models of incentive level and charging time margin respectively to analyze the influence of these two factors on the users′ response behavior;then,the two factors are integrated with the entropy weight method to establish a two-dimensional cloud model reflecting the users′ response willingness;finally,the two-dimensional cloud model is used to modify the schedulable capacity obtained by the traditional Monte Carlo simulation method. The example shows that the proposed method can correctly and effectively quantify the uncertainty of users′ response and accurately assess the schedulable capacity of AEVs.
关键词(KeyWords):
电动汽车集群;可调度容量;响应不确定性;云模型;蒙特卡洛模拟
aggregated electric vehicles;schedulable capacity;response uncertainty;cloud model;Monte Carlo simulation
基金项目(Foundation): 国家重点研发计划资助项目(2018YFE0122200)
作者(Author):
王吉兴,余洋,米增强,蔡新雷
WANG Jixing,YU Yang,MI Zengqiang,CAI Xinlei
DOI: 10.19585/j.zjdl.202205001
参考文献(References):
- [1]董锴,蔡新雷,崔艳林,等.基于马尔科夫链的电动汽车聚合建模及多模式调频控制策略[J].电网技术,2022,46(2):622-634.
- [2]田立亭,史双龙,贾卓.电动汽车充电功率需求的统计学建模方法[J].电网技术,2010,34(11):126-130.
- [3]罗卓伟,胡泽春,宋永华,等.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):36-42.
- [4]陈丽丹,聂涌泉,钟庆.基于出行链的电动汽车充电负荷预测模型[J].电工技术学报,2015,30(4):216-225.
- [5]张聪,张祥文,夏俊荣,等.电动汽车实时可调度容量评估方法研究[J].电力系统保护与控制,2015,43(22):99-106.
- [6]陈嘉敏,徐永海,张雪垠.基于电动汽车V2G响应能力的储能容量配置方法[J].电力建设,2019,40(3):34-41.
- [7]杨俊秋.电动汽车充放电容量预测及控制策略的优化研究[D].北京:北京交通大学,2012.
- [8]张洪财,胡泽春,宋永华,等.考虑时空分布的电动汽车充电负荷预测方法[J].电力系统自动化,2014,38(1):13-20.
- [9] BAE S,KWASZNSKI A.Spatial and temporal model of electric vehicle charging demand[J]. IEEE Transactions on Smart Grid,2012,3(1):394-403.
- [10]郑竞宏,戴梦婷,张曼,等.住宅区式电动汽车充电站负荷集聚特性及其建模[J].中国电机工程学报,2012,32(22):32-38.
- [11]董罡,张华栋,王振祥,等.基于响应行为不确定性的电动汽车充电负荷预测研究[J].电测与仪表,2018,55(20):60-65.
- [12] WANG Q,WANG J,GUAN Y. Stochastic unit commitment with uncertain demand response[J].IEEE Transactions on Sustainable Energy,2013,28(1):562-563.
- [13]孙宇军,李扬,王蓓蓓,等.计及不确定性需求响应的日前调度计划模型[J].电网技术,2014,38(10):2708-2714.
- [14]彭文昊,陆俊,冯勇军,等.计及用户参与不确定性的需求响应策略优化方法[J].电网技术,2018,42(5):1588-1594.
- [15]杨洁,王国胤,刘群,等.正态云模型研究回顾与展望[J].计算机学报,2018,41(3):724-744.
- [16]王惠中,刘轲,杨世亮.基于云模型的电力系统负荷组合预测[J].计算机系统应用,2016,25(5):209-212.
- [17]吕力.市场环境下电动汽车的聚合模型及其参与电力系统辅助服务的策略研究[D].南京:东南大学,2018.
- [18]章国勇.风电功率预测区间评估及其并网发电调度研究[D].武汉:华中科技大学,2015.
- [19]葛晓琳,史亮,刘亚,等.考虑需求响应不确定性的电动汽车负荷Sigmoid云模型预测[J].中国电机工程学报,2020,40(21):6913-6925.
- [20]王辉,文福拴,辛建波.电动汽车充放电特性及其对配电系统的影响分析[J].华北电力大学学报(自然科学版),2011,38(5):17-24.