浙江电力

2021, v.40;No.299(03) 73-78

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于Cascade R-CNN的配电网鸟巢检测
Bird Nest Detection in Distribution Network Based on Cascade R-CNN

赵锴,李继东,黄佳,郑静媛,张淞杰
ZHAO Kai,LI Jidong,HUANG Jia,ZHENG Jingyuan,ZHANG Songjie

摘要(Abstract):

绝大部分的配电网线路故障都是架空线路故障,而鸟害一直是导致架空线路故障高发的主要原因,仅次于雷害与外力破坏。并且由于输电线路人工巡检成本较大,电网公司缺乏有效的应对措施。近年来,随着深度学习技术的不断发展,基于深度学习方法的目标检测与定位识别技术已经达到不错的效果,并开始大规模应用于产业。因此提出了一种基于Cascade R-CNN的配电网鸟巢检测方法,实验结果证明,该方法可以为配电网提供一种相对稳定、高效的鸟巢检测结果。
Of the distribution line faults, the best part occurs on overhead lines. Bird damage, only second to lightning strike and external damage, is a major reason for overhead line fault. Given the high cost of manual inspection on transmission lines, power grid enterprises lack effective solutions. With the continuous development of deep learning technologies in recent years, object detection and location recognition based on deep learning methods have excellent performance and have been applied in the industry. This paper proposes a method for bird nest detection on distribution networks based on Cascade R-CNN. The experiment results show that the method can provide a stable and efficient bird nest detection on the distribution network.

关键词(KeyWords): 配电网;鸟巢检测;深度学习;目标检测;卷积神经网络
distribution network;bird nest detection;deep learning;object detection;convolutional neural network

Abstract:

Keywords:

基金项目(Foundation): 国家电网有限公司科技项目(52020518005F)

作者(Author): 赵锴,李继东,黄佳,郑静媛,张淞杰
ZHAO Kai,LI Jidong,HUANG Jia,ZHENG Jingyuan,ZHANG Songjie

DOI: 10.19585/j.zjdl.202103011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享