浙江电力

2015, v.34;No.227(03) 44-47+51

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于灰色关联度和BP网络的SO2浓度软测量模型
Soft Measurement Model of SO2 Concentration Based on Gray Relation Degree and BP Networks

吴林峰
WU Linfeng

摘要(Abstract):

燃煤发电厂SO2排放量的监测是进行大气污染源控制的基础性工作。但监测烟气环境恶劣,安装监测设备费用高、维护困难。为此,提出了一种SO2浓度预测的方法。SO2的产生受很多因素影响,利用灰色关联度分析法提取影响大的因素,然后利用选优后的参数建立BP神经网络预测模型。试验结果表明预测模型具有较高的准确性。
The monitoring of SO2 emissions from coal-fired power plant is the basic work to control atmospheric pollution sources. However, the environment of flue gas monitoring is harsh and the monitoring devices are costly and difficult in maintenance. Therefore, the paper brings forward a method of SO2 concentration prediction. The generation of SO2 is influenced by multiple factors. Therefore, factors that owns the most influence is picked up by gray relational analysis; then, the selected parameters are used to establish BP neural network prediction model. The test result shows that the prediction model owns higher accuracy.

关键词(KeyWords): 灰色关联度;SO2排放量;BP神经网络;预测
gray relation degree;SO2 emission;BP neural network;prediction

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 吴林峰
WU Linfeng

DOI: 10.19585/j.zjdl.2015.03.012

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享