浙江电力

2023, v.42;No.329(09) 27-35

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于多因素相关性分析的气温敏感负荷预测
Research on prediction of temperature-sensitive loads based on multi-factor correlation analysis

章姝俊,陆海清,陈佳玺,邵越
ZHANG Shujun,LU Haiqing,CHEN Jiaxi,SHAO Yue

摘要(Abstract):

在全球变暖的大背景下,气候的不稳定性给电力系统的安全运行带来了挑战,科学准确预测采暖、降温等气温敏感负荷的用电需求显得尤为重要。传统电力系统气温敏感负荷预测方法容易忽略气候、地理及社会等多方面因素的综合影响,对此提出一种基于“3T”(温度、区域、时间)模型的降温/采暖负荷及电量增长预测方法。在实现气温敏感负荷及电量分解的基础上,首先梳理影响降温/采暖用电的气温因素及社会因素。接着,基于历史数据,选取与气温敏感负荷相关性较大的影响因素,并借助所提优化模型确定负荷和电量预测函数。然后,在函数中代入相应时段的气温及社会情况预测数据,得到预测结果。最后通过算例验证了该方法的有效性,结果表明,在气温敏感负荷预测中考虑多因素可以使测算结果更贴近实际,能更好地适应未来温度变化趋势对用电需求的影响。
Amidst the backdrop of global warming, the unstable climate presents challenges to the secure operation of power systems. Therefore, it is particularly crucial to accurately and scientifically forecast the electricity demand of temperature-sensitive loads such as heating and cooling. Conventional methods for predicting temperaturesensitive load fail to encompass the comprehensive influence of factors such as climate, geography, and society.Therefore, a method of forecasting the increase of cooling and heating loads and electricity based on the 3T(temperature, territory and time) model. Based on the decomposition of temperature-sensitive load and electricity, the temperature and social factors affecting electricity consumption for cooling and heating are first sorted out. Then, the influencing factors with greater correlation with the temperature-sensitive load are selected based on historical data, and the load and electricity forecasting function is determined with the help of the proposed optimization model.Then, the predicted data of temperature and social conditions of the corresponding time period are substituted in the function to obtain the prediction results. Finally, the efficacy of the method is validated through case studies. Results indicate that considering multiple factors in temperature-sensitive load prediction yields estimations closer to reality, enhancing the adaptation of electricity demand to future temperature trends.

关键词(KeyWords): 气温敏感负荷;相关性分析;用电需求;预测;气温因素;社会因素
temperature-sensitive load;correlation analysis;electricity demand;forecasting;temperature factors;social factors

Abstract:

Keywords:

基金项目(Foundation): 国家电网有限公司科技项目(5700-202257453A-2-0-ZN)

作者(Author): 章姝俊,陆海清,陈佳玺,邵越
ZHANG Shujun,LU Haiqing,CHEN Jiaxi,SHAO Yue

DOI: 10.19585/j.zjdl.202309004

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享