基于改进粒子群算法的电力系统储能容量配置方法An Energy storage capacity allocation method for power system based on improved particle swarm optimization
赵扉,薛龙江,朱晶亮,陈鼎,方景辉,吴军,朱悦人
ZHAO Fei,XUE Longjiang,ZHUJingliang,CHEN Ding,FANG Jinghui,WU Jun,ZHU Yueren
摘要(Abstract):
受配置场景条件的限制,储能容量配置时间较长,储能容量净收益数值较低。为此,提出基于改进粒子群算法的电力系统储能容量配置方法。首先确定电力系统储能容量,从储能系统剩余电量、充放电功率、可靠性三个方面分析储能容量配置约束条件;然后以净收益最大化作为储能容量配置目标,构建电力系统经济模型并引入改进粒子群算法求解模型,完成电力系统储能容量的配置。实验结果表明所提出方法的储能容量配置时间短,储能容量净收益高,验证了该方法的应用性能。
Due to the limitations of configuration scenarios,energy storage capacity configuration takes long time and the net profit value of energy storage capacity is small. Research on energy storage capacity configuration method for power system based on an improved particle swarm optimization(PSO)is proposed. First,the power system energy storage capacity is determined,and the storage capacity configuration constraints are analyzed in respect of the remaining power,charging and discharging efficiency,and reliability of the energy storage system;then,with the objective of maximum net revenue of storage capacity configuration,an economy model of the power system is constructed,and the improved particle swarm algorithm is introduced to solve the model and complete the configuration of the power system energy storage capacity. The experimental results show that the proposed method takes shorter configuration time while owning higher net energy storage capacity revenue,which verifies the application performance of the method.
关键词(KeyWords):
改进粒子群算法;储能系统;容量配置;分时电价
improved particle swarm optimization;energy storage system;capacity configuration;time of use tariffs
基金项目(Foundation): 国网浙江省电力有限公司平湖市供电公司科技项目(SGZJJXPHFZJS2100135)
作者(Author):
赵扉,薛龙江,朱晶亮,陈鼎,方景辉,吴军,朱悦人
ZHAO Fei,XUE Longjiang,ZHUJingliang,CHEN Ding,FANG Jinghui,WU Jun,ZHU Yueren
DOI: 10.19585/j.zjdl.202211003
参考文献(References):
- [1]孙伟卿,罗静,张婕.高比例风电接入的电力系统储能容量配置及影响因素分析[J].电力系统保护与控制,2021,49(15):9-18.
- [2]杨立滨,曹阳,魏韡,等.计及风电不确定性和弃风率约束的风电场储能容量配置方法[J].电力系统自动化,2020,44(16):45-52.
- [3]齐晓光,姚福星,朱天曈,等.考虑大规模风电接入的电力系统混合储能容量优化配置[J].电力自动化设备,2021,41(10):11-19.
- [4]李卫国,焦盘龙,刘新宇,等.基于变分模态分解的储能辅助传统机组调频的容量优化配置[J].电力系统保护与控制,2020,48(6):43-52.
- [5]刘冰倩,吴涵,黄建业,等.考虑有功-无功协同优化的风场、光伏电站储能系统容量配置研究[J].电力系统及其自动化学报,2021,33(11):82-89.
- [6]陈浩,贾燕冰,王晓勤,等.基于CPS指标评估的不同场景调频储能容量配置[J].太原理工大学学报,2020,51(3):423-429.
- [7]姜海洋,杜尔顺,金晨,等.高比例清洁能源并网的跨国互联电力系统多时间尺度储能容量优化规划[J].中国电机工程学报,2021,41(6):2101-2114.
- [8]郭玲娟,魏斌,韩肖清,等.基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J].高电压技术,2020,46(2):527-537.
- [9]郝少伟,李勇军,赵尚弘,等.基于改进粒子群算法的多载波NOMA功率分配策略[J].电子学报,2020,48(10):2009-2016.
- [10]刘细平,胡卫平,邹永玲,等.改进粒子群算法的永磁同步电机多参数辨识[J].电机与控制学报,2020,24(7):112-120.
- [11]曹祎,王路,雷民,等.基于改进粒子群算法的电流互感器J-A模型参数辨识[J].电测与仪表,2021,58(5):70-77.
- [12]张岳星,王轶群,李硕,等.基于海图和改进粒子群优化算法的AUV全局路径规划[J].机器人,2020,42(1):120-128.
- [13]周平,孙悦,康朋,等.光热电站的高比例可再生能源系统混合储能容量优化配置方法[J].电工电能新技术,2021,40(3):22-31.
- [14]仇成,李亦农,宋若晨,等.风光联合发电系统的储能容量优化配置方法[J].水电能源科学,2020,38(5):202-206.
- [15]徐雁飞,宋天昊,袁铁江,等.风-储联合发电系统容量优化配置及其影响因素分析[J].电力电容器与无功补偿,2021(1):173-180.
- 改进粒子群算法
- 储能系统
- 容量配置
- 分时电价
improved particle swarm optimization - energy storage system
- capacity configuration
- time of use tariffs