浙江电力

2025, v.44;No.354(10) 55-68

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于二次模态分解与Informer-BiLSTM的电力负荷预测
Power load forecasting based on SMD-Informer-BiLSTM

许世欣,李雯婷,彭道刚,税纪钧,刘杰,钟华平
XU Shixin,LI Wenting,PENG Daogang,SHUI Jijun,LIU Jie,ZHONG Huaping

摘要(Abstract):

针对单一深度学习模型特征提取不全面、非线性数据处理能力不足等传统方法存在的问题,提出一种基于二次模态分解与Informer-BiLSTM的电力负荷预测模型。首先利用CEEMDAN(自适应噪声完备经验模态分解)联合小波阈值对原始数据去噪,再通过VMD(变分模态分解)将原始数据分解为一组平稳性强的模态分量,然后利用Informer和BiLSTM并行网络分别捕捉负荷数据集的长期趋势与短期波动,最后融合两者输出实现更为精准的预测。采用两组特性不同的负荷数据集在不同情境下验证所提模型性能,结果表明该模型有效提升了负荷预测精度与泛化能力,可为电力系统优化调度提供可靠的数据支持。
To address the limitations of traditional methods—such as inadequate feature extraction and insufficient nonlinear processing capability in single deep learning models—this paper proposes a novel power load forecasting model integrating secondary modal decomposition(SMD) with Informer-BiLSTM. First, complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) combined with wavelet thresholding is applied to denoise the raw data. Next, variational mode decomposition(VMD) decomposes the raw data into a set of highly stable modal components. These components are then processed through a parallel network architecture comprising Informer and BiLSTM to capture long-term trends and short-term fluctuations in the load data set, respectively. Finally, the outputs of both networks are fused to achieve more accurate forecasting. The proposed model is validated under multiple scenarios using two distinct load datasets. Results demonstrate that the model significantly improves forecasting accuracy and generalization capability, providing reliable data support for optimized power system scheduling.

关键词(KeyWords): 电力负荷预测;二次模态分解;自适应噪声完备经验模态分解;变分模态分解;Informer;BiLSTM
power load forecasting;SMD;CEEMDAN;VMD;Informer;BiLSTM

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(62373241);; 国网上海市电力公司科技项目(520932250002)

作者(Author): 许世欣,李雯婷,彭道刚,税纪钧,刘杰,钟华平
XU Shixin,LI Wenting,PENG Daogang,SHUI Jijun,LIU Jie,ZHONG Huaping

DOI: 10.19585/j.zjdl.202510005

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享