基于多维特征参量的台区拓扑识别方法研究Research on a topology identification method for distribution areas using multi-dimensional electrical characteristic parameters
王珺,朱亮,高晶,康守信,章杨帆,游小辉,伍栋文
WANG Jun,ZHU Liang,GAO Jing,KANG Shouxin,ZHANG Yangfan,YOU Xiaohui,WU Dongwen
摘要(Abstract):
针对传统的单一电气特征参量拓扑识别方法准确率和稳定性不高的问题,提出基于多维电气特征参量的台区拓扑识别方法。首先,通过信标广播绝对时间与信标传输时延补偿完成台区内节点时间同步;其次,结合节点数据同步采集和边缘处理,建立高效的数据压缩机制,实现多维特征参数的高效采集和传输;然后,通过监听周围节点创建节点的邻节集合,减小拓扑计算的范围;最后,基于电压、电流和电量特征参量,提出基于模糊矩阵算法的多维特征参量拓扑识别方法,并结合算例进行验证。结果表明,所提出的多维特征参量拓扑识别方法准确率高于94.12%,准确率和鲁棒性均优于基于传统的单一特征参量拓扑识别方法。
To address the issues of low accuracy and stability in traditional topology recognition methods that rely on single electrical characteristic parameters, a new method for topology identification in distribution areas using multidimensional electrical characteristic parameters is proposed. Firstly, synchronization of node time within distribution areas is achieved by compensating for the absolute time broadcast by the beacon and the transmission delay of the beacon. Secondly, by using synchronous node data acquisition and edge processing, an efficient data compression mechanism is established to enable the efficient collection and transmission of multi-dimensional characteristic parameters. Additionally, by monitoring surrounding nodes, a neighboring node set is created to reduce the scope of topology calculations. Finally, the paper proposes a topology identification method based on the fuzzy matrix algorithm, utilizing voltage, current, and power characteristic parameters, and validates it with examples. The results demonstrate that the proposed method achieves an accuracy of over 94.12%, surpassing traditional topology recognition methods that rely on single electrical characteristic parameters in both accuracy and robustness.
关键词(KeyWords):
配电台区;拓扑识别;同步采集;邻节集合;模糊矩阵
distribution area;topology identification;synchronous acquisition;neighboring node set;fuzzy matrix
基金项目(Foundation): 国家电网有限公司科技项目(52180024000G);; 国网江西省电力有限公司科技项目(52185223000L)
作者(Author):
王珺,朱亮,高晶,康守信,章杨帆,游小辉,伍栋文
WANG Jun,ZHU Liang,GAO Jing,KANG Shouxin,ZHANG Yangfan,YOU Xiaohui,WU Dongwen
DOI: 10.19585/j.zjdl.202412012
参考文献(References):
- [1]余盛达,王玉中,张祖伟,等.基于导线阻抗特征改进聚类鲁棒性的台区线-相-户拓扑识别方法[J].南方电网技术,2023,17(7):55-64.YU Shengda,WANG Yuzhong,ZHANG Zuwei,et al.Line-phase-household topology identification method in substation area based on wire impedance characteristics to improve clustering robustness[J].Southern Power System Technology,2023,17(7):55-64.
- [2]白浩,周长城,袁智勇,等.基于数字孪生的数字电网展望和思考[J].南方电网技术,2020,14(8):18-24.BAI Hao,ZHOU Changcheng,YUAN Zhiyong,et al.Prospect and thinking of digital power grid based on digital twin[J]. Southern Power System Technology,2020,14(8):18-24.
- [3]李梁.基于高级量测架构的配电系统拓扑识别技术研究[D].上海:上海电力大学,2021.LI Liang. Research on topology identification technology of distribution system based on advanced measurement infrastructure[D].Shanghai:Shanghai University of Electric Power,2021.
- [4]胡选正,丛伟,古千硕,等.基于电表量测数据的低压供电网络拓扑识别方法[J/OL].电力自动化设备:1-17(2022-08-30)[2024-02-29]. https://doi. org/10.16081/j. epae.202208044.HU Xuanzheng,CONG Wei,GU Qianshuo,et al.A topology identification method for low-voltage power supply network based on meter measurement data[J/OL].Electric Power Automation Equipment,1-17(2022-08-30)[2024-02-29]. https://doi. org/10.16081/j. epae.202208044.
- [5]凌佳凯,章逸舟,胡金峰,等.基于CNN-LSTM-Attention的配电网拓扑实时辨识方法[J].浙江电力,2024,43(3):84-94.LING Jiakai,ZHANG Yizhou,HU Jinfeng,et al.A realtime topology identification method of distribution networks based on CNN-LSTM-Attention[J].Zhejiang Electric Power,2024,43(3):84-94.
- [6]何奉禄,陈佳琦,李钦豪,等.智能电网中的物联网技术应用与发展[J].电力系统保护与控制,2020,48(3):58-69.HE Fenglu,CHEN Jiaqi,LI Qinhao,et al.Application and development of Internet of Things in smart grid[J].Power System Protection and Control,2020,48(3):58-69.
- [7]黄艺璇,杨世海,曹晓冬,等.基于分段电流特征和随机森林算法的低压配电网拓扑识别方法[J].电力需求侧管理,2023,25(2):63-69.HUANG Yixuan,YANG Shihai,CAO Xiaodong,et al.Topology identification method of low voltage distribution network based on segmented current characteristics and random forest algorithm[J].Power Demand Side Management,2023,25(2):63-69.
- [8]赵耀,陈永江,纪坤华,等.基于有限关键节点及Wasserstein距离的配网拓扑识别[J].中国电力,2024,57(4):151-161.ZHAO Yao,CHEN Yongjiang,JI Kunhua,et al.Distribution network topology identification based on finite key nodes and Wasserstein distance[J].Electric Power,2024,57(4):151-161.
- [9]邹子扬.基于大数据的台区电网拓扑识别方法研究[D].广州:广东工业大学,2022.ZOU Ziyang. Research on topology identification method of substation power grid based on big data[D]. Guangzhou:Guangdong University of Technology,2022.
- [10]陈招安,黄纯,张志丹,等.基于T型灰色关联度和KNN算法的低压配电网台区拓扑识别方法[J].电力系统保护与控制,2021,49(1):163-169.CHEN Zhaoan,HUANG Chun,ZHANG Zhidan,et al.Topology identification method of a low voltage distribution network based on T-type grey correlation degree and KNN algorithm[J]. Power System Protection and Control,2021,49(1):163-169.
- [11]洪文慧,李钦豪,张勇军,等.基于二次矩阵补全的低压配电网相序识别算法[J].电力自动化设备,2022,42(9):133-138.HONG Wenhui,LI Qinhao,ZHANG Yongjun,et al.Quadratic matrix completion based phase sequence identification algorithm for low-voltage distribution network[J].Electric Power Automation Equipment,2022,42(9):133-138.
- [12]赵宇东,代宇,田浩杰,等.基于差分Lasso的低压台区拓扑识别方法[J].现代电子技术,2021,44(14):124-128.ZHAO Yudong,DAI Yu,TIAN Haojie,et al. Lowvoltage transformer topology identification method based on differential Lasso[J]. Modern Electronics Technique,2021,44(14):124-128.
- [13]童力,梁海维,邹旭东,等.基于数据驱动的配电网拓扑识别及线路阻抗估计[J].浙江电力,2022,41(1):10-18.TONG Li,LIANG Haiwei,ZOU Xudong,et al. Datedriven distribution network topology identification and line impedance estimation[J].Zhejiang Electric Power,2022,41(1):10-18.
- [14]陈金雷,代洪光,冀笑伟,等.基于电量守恒的低压配电台区拓扑识别算法[J/OL].电力信息与通信技术:1-8(2024-03-06)[2024-03-21].http://kns.cnki.net/kcms/detail/10.1164.tk.20240303.1127.002.html.CHEN Jinlei,DAI Hongguang,JI Xiaowei,et al. Topology recognition algorithm of low-voltage distribution area based on conservation of electricity[J/OL].Electric Power Information and Communication Technology:1-8(2024-03-06)[2024-03-21].http://kns.cnki.net/kcms/detail/10.1164.tk.20240303.1127.002.html.
- [15]刘文彬,臧家义,邵文正.基于主成分分析和图论的低压配电网相户关系拓扑识别[J].齐鲁工业大学学报,2022,36(3):59-65.LIU Wenbin,ZANG Jiayi,SHAO Wenzheng. Topology identification of phase household relationship in low voltage distribution network based on principal component analysis and graph theory[J].Journal of Qilu University of Technology,2022,36(3):59-65.
- 配电台区
- 拓扑识别
- 同步采集
- 邻节集合
- 模糊矩阵
distribution area - topology identification
- synchronous acquisition
- neighboring node set
- fuzzy matrix