基于序列分解的母线负荷降噪预测方法A noise reduction forecasting method of bus load based on sequence decomposition
杨坚,赵洁,汤义勤,蒋旭,唐佳杰,张怀勋
YANG Jian,ZHAO Jie,TANG Yiqin,JIANG Xu,TANG Jiajie,ZHANG Huaixun
摘要(Abstract):
新型电力系统背景下,分布式电源和用户侧行为的多样性使母线负荷稳定性不足,对负荷短期预测提出了新的挑战。为此,提出一种基于序列分解的母线负荷降噪预测方法,将变分模态分解方法的构造与分解规则应用到母线负荷序列分解中,针对序列分解后的余项,利用局部加权回归方法进行平滑处理,实现母线负荷降噪预测。基于某地区母线负荷有功功率实测数据,构建循环神经网络对降噪后的母线负荷进行预测,结果表明该方法能够去除母线负荷序列噪声,序列趋于光滑且保留了原始母线负荷序列的特征,具有优良的预测曲线和精确的预测结果。
In the context of new power systems, the diverse distributed power sources and user-side behavior have introduced instability in bus loads, thus presenting a fresh challenge for short-term load forecasting. In response to this challenge, a noise reduction forecasting method for bus load based on sequence decomposition is proposed. The construction and decomposition rules of the variational mode decomposition(VMD) are applied to the sequence decomposition of bus load. The residual terms following the sequence decomposition are smoothed using locally weighted regression(LWR) to forecast the noise reduction of bus load. Based on the measured active power data of bus load in an area, a recurrent neural network(RNN) is constructed to forecast the bus load after noise reduction.The results indicate that this method effectively eliminates the noise of the bus load sequence, and the sequence tends to be smooth while retaining the characteristics of the original bus load sequence. Moreover, it yields excellent forecasting curves and accurate forecasting results.
关键词(KeyWords):
母线负荷预测;母线负荷降噪;变分模态分解;循环神经网络;局部加权回归
bus load forecasting;noise reduction of bus load;VMD;RNN;LWR
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ1900S4)
作者(Author):
杨坚,赵洁,汤义勤,蒋旭,唐佳杰,张怀勋
YANG Jian,ZHAO Jie,TANG Yiqin,JIANG Xu,TANG Jiajie,ZHANG Huaixun
DOI: 10.19585/j.zjdl.202312010
参考文献(References):
- [1]韩勇,李红梅.基于小波分解的支持向量机母线负荷预测[J].电力自动化设备,2012,32(4):88-91.HAN Yong,LI Hongmei. Bus load forecasting based on wavelet transform and SVM[J].Electric Power Automation Equipment,2012,32(4):88-91.
- [2]杨维熙,刘勇,舒勤.基于补充集合经验模态分解的短期负荷预测模型[J].电网技术,2022,46(9):3615-3623.YANG Weixi,LIU Yong,SHU Qin.Short-term load forecasting model based on empirical mode decomposition of supplementary set[J].Power System Technology,2022,46(9):3615-3623.
- [3]刘云鹏,许自强,董王英,等.基于经验模态分解和长短期记忆神经网络的变压器油中溶解气体浓度预测方法[J].中国电机工程学报,2019,39(13):3998-4008.LIU Yunpeng,XU Ziqiang,DONG Wangying,et al.Concentration prediction of dissolved gases in transformer oil based on empirical mode decomposition and long shortterm memory neural networks[J]. Proceedings of the CSEE,2019,39(13):3998-4008.
- [4]邓带雨,李坚,张真源,等.基于EEMD-GRU-MLR的短期电力负荷预测[J].电网技术,2020,44(2):593-602.DENG Daiyu,LI Jian,ZHANG Zhenyuan,et al. Shortterm electric load forecasting based on EEMD-GRU-MLR[J].Power System Technology,2020,44(2):593-602.
- [5]赵会茹,赵一航,郭森.基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[J].中国电力,2020,53(6):48-55.ZHAO Huiru,ZHAO Yihang,GUO Sen.Short-term load forecasting based on complementary ensemble empirical mode decomposition and long short-term memory[J].Electric Power,2020,53(6):48-55.
- [6] SUN Y J,LI S H,WANG Y L,et al.Fault diagnosis of rolling bearing based on empirical mode decomposition and improved Manhattan distance in symmetrized dot pattern image[J].Mechanical Systems and Signal Processing,2021,159:107817.
- [7]谷紫文,李鹏,郎恂,等.基于变分模态分解和密度峰值快速搜索的电力负荷曲线可控聚类模型[J].电力系统保护与控制,2021,49(8):118-127.GU Ziwen,LI Peng,LANG Xun,et al.A controllable clustering model of the electrical load curve based on variational mode decomposition and fast search of the density peak[J].Power System Protection and Control,2021,49(8):118-127.
- [8] CHANG J H,ZHU L Y,LI H X,et al.Noise reduction in Lidar signal using correlation-based EMD combined with soft thresholding and roughness penalty[J]. Optics Communications,2018,407:290-295.
- [9]段睿钦,蒋燕,周彬彬,等.基于改进聚类分析方法的系统负荷预测研究[J].电工技术,2021(9):22-25.DUAN Ruiqin,JIANG Yan,ZHOU Binbin,et al. Research on system load forecasting based on improved cluster analysis method[J]. Electric Engineering,2021(9):22-25.
- [10]范士雄,刘幸蔚,於益军,等.基于多源数据和模型融合的超短期母线负荷预测方法[J].电网技术,2021,45(1):243-250.FAN Shixiong,LIU Xingwei,YU Yijun,et al. Multisource data and hybrid neural network based ultra-shortterm bus load forecasting[J].Power System Technology,2021,45(1):243-250.
- [11]张兴科,魏朝阳,李征,等.包含高渗透率分布式电源的母线负荷区间预测[J].电网与清洁能源,2020,36(12):101-106.ZHANG Xingke,WEI Chaoyang,LI Zheng,et al. Bus load interval prediction of the distributed generation with high penetration[J]. Power System and Clean Energy,2020,36(12):101-106.
- [12]臧海祥,许瑞琦,刘璟璇,等.基于多维融合特征和卷积神经网络的多任务用户短期负荷预测[J].电力系统自动化,2023,47(13):69-77.ZANG Haixiang,XU Ruiqi,LIU Jingxuan,et al. Shortterm load forecasting for multi-task consumers based on multi-dimensional fusion feature and convolutional neural network[J].Automation of Electric Power Systems,2023,47(13):69-77.
- [13]董雷,陈振平,韩富佳,等.基于图卷积神经网络与Kmeans聚类的居民用户集群短期负荷预测[J/OL].电网技术:1-11[2022-12-22].DONG Lei,CHEN Zhenping,HAN Fujiaet al.Short-term load forecasting for residential customer clusters based on graph convolutional neural networks with K-means clustering[J/OL].Power Grid Technology:1-11[2022-12-22].
- [14]胡如乐,陈逸枞,张大海,等.基于SSA-Bi-LSTM神经网络的母线负荷预测方法[J].广东电力,2022,35(2):19-26.HU Rule,CHEN Yicong,ZHANG Dahai,et al.Bus load prediction method based on SSA-Bi-LSTM neural network[J].Guangdong Electric Power,2022,35(2):19-26.
- [15]臧海祥,刘冲冲,滕俊,等.基于CNN-GRU分位数回归的短期母线负荷概率密度预测[J].智慧电力,2020,48(8):24-30.ZANG Haixiang,LIU Chongchong,TENG Jun,et al.Short-term bus load probability density forecasting based on CNN-GRU quantile regression[J].Smart Power,2020,48(8):24-30.
- [16]苏理云,梁昌海,李凤兰,等.基于LOWESS的函数系数自回归模型(FAR)优化及应用[J].重庆理工大学学报(自然科学),2020,34(3):228-239.SU Liyun,LIANG Changhai,LI Fenglan,et al.Optimization of functional-coefficient autoregressive models(FAR)based on LOWESS and its application[J]. Journal of Chongqing University of Technology(Natural Science),2020,34(3):228-239.
- [17]朱刘柱,王绪利,马静,等.基于小波包分解与循环神经网络的综合能源系统短期负荷预测[J].电力建设,2020,41(12):131-138.ZHU Liuzhu,WANG Xuli,MA Jing,et al. Short-term load forecast of integrated energy system based on wavelet packet decomposition and recurrent neural network[J].Electric Power Construction,2020,41(12):131-138.