浙江电力

2020, v.39;No.295(11) 103-111

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于多风电相关性场景生成法的配电网随机多目标无功优化
Stochastic Multi-objective Reactive Power Optimization of Distribution Network Based on Multiple Wind Turbines Correlative Scenario Generation Method

倪爽,崔承刚,郑庆荣,郝慧玲,杨宁,奚培锋
NI Shuang,CUI Chenggang,ZHENG Qingrong,HAO Huiling,YANG Ning,XI Peifeng

摘要(Abstract):

针对配电网中风电接入问题,基于多风电相关性场景生成法,探讨分析了配电网的随机多目标无功优化问题。首先,基于风电场功率的历史数据建立非参数的累计经验分布模型,为描述不同风电场之间的相关性,采用多元随机变量协方差参数辨识方法生成风场功率协方差矩阵。再次,通过逆变换抽样生成大量符合相关性和波动性特点的多风电场风功率场景,并利用K-means聚类法进行最优场景削减。最后,以网络损耗以及电压偏移为目标建立配电网随机多目标无功优化模型,并采用NSGA-Ⅱ算法求解了该模型。算例表明,该方法与传统的不考虑相关性的场景生成法相比,生成的场景具有更高的波动性贴合度和历史贴合度,所得到的最优配置方案具有更好的优化效果。
Because of wind power access into distribution networks, stochastic multi-objective reactive power optimization of the distribution network is discussed based on the multi-wind power correlation scenario generation method. Firstly, a nonparametric cumulative empirical distribution model is established based on the historical data of wind farm power. To describe the correlation between different wind farms, the multivariate random variable covariance parameter identification method is used to generate the wind farm power covariance matrix. Thirdly, a large number of wind power scenes of multi-wind farms are generated by inverse transformation sampling, and the optimal scenes are reduced by the K-means clustering method. Finally, a stochastic multi-objective reactive power optimization model for a distribution network is established, which is based on network loss and voltage offset, and solved by the NSGA-II algorithm. The example shows that compared with the traditional scene generating method, the generated scene has higher volatility fitting degree and history fitting degree, and the optimal configuration scheme has a better optimization effect.

关键词(KeyWords): 多风电场;场景生成法;相关性;NSGA-Ⅱ算法;随机多目标无功优化
multiple wind farms;scenario generation method;correlation;NSGA-Ⅱ algorithm;stochastic multi-objective reactive power optimization

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金青年科学基金项目(51607111);; 上海市科委地方院校能力建设项目(15160500800);; 上海市人保局人才专项(2017116);; 上海市科委计划项目(18DZ1203502)

作者(Author): 倪爽,崔承刚,郑庆荣,郝慧玲,杨宁,奚培锋
NI Shuang,CUI Chenggang,ZHENG Qingrong,HAO Huiling,YANG Ning,XI Peifeng

DOI: 10.19585/j.zjdl.202011016

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享