基于多风电相关性场景生成法的配电网随机多目标无功优化Stochastic Multi-objective Reactive Power Optimization of Distribution Network Based on Multiple Wind Turbines Correlative Scenario Generation Method
倪爽,崔承刚,郑庆荣,郝慧玲,杨宁,奚培锋
NI Shuang,CUI Chenggang,ZHENG Qingrong,HAO Huiling,YANG Ning,XI Peifeng
摘要(Abstract):
针对配电网中风电接入问题,基于多风电相关性场景生成法,探讨分析了配电网的随机多目标无功优化问题。首先,基于风电场功率的历史数据建立非参数的累计经验分布模型,为描述不同风电场之间的相关性,采用多元随机变量协方差参数辨识方法生成风场功率协方差矩阵。再次,通过逆变换抽样生成大量符合相关性和波动性特点的多风电场风功率场景,并利用K-means聚类法进行最优场景削减。最后,以网络损耗以及电压偏移为目标建立配电网随机多目标无功优化模型,并采用NSGA-Ⅱ算法求解了该模型。算例表明,该方法与传统的不考虑相关性的场景生成法相比,生成的场景具有更高的波动性贴合度和历史贴合度,所得到的最优配置方案具有更好的优化效果。
Because of wind power access into distribution networks, stochastic multi-objective reactive power optimization of the distribution network is discussed based on the multi-wind power correlation scenario generation method. Firstly, a nonparametric cumulative empirical distribution model is established based on the historical data of wind farm power. To describe the correlation between different wind farms, the multivariate random variable covariance parameter identification method is used to generate the wind farm power covariance matrix. Thirdly, a large number of wind power scenes of multi-wind farms are generated by inverse transformation sampling, and the optimal scenes are reduced by the K-means clustering method. Finally, a stochastic multi-objective reactive power optimization model for a distribution network is established, which is based on network loss and voltage offset, and solved by the NSGA-II algorithm. The example shows that compared with the traditional scene generating method, the generated scene has higher volatility fitting degree and history fitting degree, and the optimal configuration scheme has a better optimization effect.
关键词(KeyWords):
多风电场;场景生成法;相关性;NSGA-Ⅱ算法;随机多目标无功优化
multiple wind farms;scenario generation method;correlation;NSGA-Ⅱ algorithm;stochastic multi-objective reactive power optimization
基金项目(Foundation): 国家自然科学基金青年科学基金项目(51607111);; 上海市科委地方院校能力建设项目(15160500800);; 上海市人保局人才专项(2017116);; 上海市科委计划项目(18DZ1203502)
作者(Author):
倪爽,崔承刚,郑庆荣,郝慧玲,杨宁,奚培锋
NI Shuang,CUI Chenggang,ZHENG Qingrong,HAO Huiling,YANG Ning,XI Peifeng
DOI: 10.19585/j.zjdl.202011016
参考文献(References):
- [1]徐韵,颜湘武.含可再生分布式电源参与调控的配电网无功电压优化控制研究综述[J].华北电力大学学报(自然科学版),2019,46(4):16-30.
- [2]胡超.主动配电网中无功功率全局协调控制策略[D].北京:北京交通大学,2017.
- [3]梁俊文,林舜江,刘明波.主动配电网分布式无功优化控制方法[J].电网技术,2018,42(1):230-237.
- [4]陈明,顾伟,李鹏,等.主动配电网分区分布式无功优化控制方法[J].现代电力,2017,34(6):40-44.
- [5]MAGDY G,MOHAMED E A,SHABIB G,et al.Microgrid dynamic security considering high penetration of renewable energy[J].Protection and Control of Modern Power Sys tems, 2018,3(1):1-11.
- [6]王玲玲,王昕,郑益慧,等.计及多个风电机组出力相关性的配电网无功优化[J].电网技术,2017,41(11):3463-3469.
- [7]马溪原.含风电电力系统的场景分析方法及其在随机优化中的应用[D].武汉:武汉大学,2014.
- [8]雷鸣,杜鹏程.基于风电功率概率预测的无功优化方法研究[J].山东电力技术,2019,46(1):6-9.
- [9]吴丽珍,蒋力波,郝晓弘.基于最优场景生成算法的主动配电网无功优化[J].电力系统保护与控制,2017,45(15):152-159.
- [10]张晓英,张艺,王琨,等.基于改进NSGA-Ⅱ算法的含分布式电源配电网无功优化[J].电力系统保护与控制,2020,48(1):55-64.
- [11]叶林,李智,孙舶皓,等.基于随机预测控制理论和功率波动相关性的风电集群优化调度[J].中国电机工程学报,2018,38(11):3172-3183.
- [12]赵书强,金天然,李志伟,等.考虑时空相关性的多风电场出力场景生成方法[J].电网技术,2019,43(11):3997-4004.
- [13]徐箭,洪敏,孙元章,等.基于经验Copula函数的多风电场出力动态场景生成方法及其在机组组合中的应用[J].电力自动化设备,2017,37(8):81-89.
- [14]蔡菲,严正,赵静波,等.基于Copula理论的风电场间风速及输出功率相依结构建模[J].电力系统自动化,2013,37(17):9-16.
- [15]季峰,蔡兴国,王俊.基于混合Copula函数的风电功率相关性分析[J].电力系统自动化,2014,38(2):1-5.
- [16]熊强,陈维荣,张雪霞,等.考虑多风电场相关性的场景概率潮流计算[J].电网技术,2015,39(8):2154-2159.
- [17]邵尤国,赵洁,方俊钧,等.基于运行层面相关性场景的含风机配电网多目标无功优化[J].电网技术,2018,42(8):2528-2535.
- [18]郑能,丁晓群,管志成,等.考虑相关性的含风电的配电网无功优化[J].南方电网技术,2018,12(1):62-69.
- [19]李玉敦.计及相关性的风速模型及其在发电系统可靠性评估中的应用[D].重庆:重庆大学,2012.
- [20]FEIJO A,VILLANUEVA D,PAZOS J L,et al.Simula tion of correlated wind speeds:a review[J].Renewable and Sustainable Energy Reviews,2011,15(6):2826-2832.
- [21]BILLINTON R,GAO Y,KARKI R.Composite system adequacy assessment incorporating large-scale wind energy conversion systems considering wind speed correlation[J].IEEE Transactions on Power Systems,2009,24(3):1375-1382.
- [22]路畅,郭力,柴园园,等.含高渗透分布式光伏的增量配电网日前优化调度方法[J].电力系统保护与控制,2019,47(18):90-98.
- [23]VON LUXBURG U,SCHLKOPF B.Statistical learning theory:models,concepts,and results[J].Handbook of the History of Logic,2011,10:651-706.
- [24]PINSON P,GIRARD R.Evaluating the quality of scenarios of short-term wind power generation[J].Applied Energy,2012,96:12-20.
- [25]黎静华,左俊军,汪赛.大规模风电并网电力系统运行风险评估与分析[J].电网技术,2016,40(11):3503-3513.
- [26]佘颖铃,江岳文.考虑风电消纳的快充站与配电网联合规划[J].电器与能效管理技术,2019(14):51-57.
- [27]金尚婷,吴杰康,覃炜梅,等.考虑风电消纳的配电网多目标无功协同优化[J].广东电力,2019,32(1):52-59.
- [28]刘嘉超,刘建伟,王明,等.典型分散式风电工程电力系统接入优化设计[J].电网与清洁能源,2019,35(6):60-68.
- [29]罗煜,吴杰康,简俊威,等.基于机会约束规划的多类型分布式电源容量与布点优化方法[J].广东电力,2018,31(4):34-42.
- [30]方绍凤,何国锋,彭院院,等.考虑风电场扰动影响的配电网潮流计算分析[J].电器与能效管理技术,2018(6):36-41.
- [31]郭鹏.双馈异步风电机组不同运行模式对风电场并网特性的影响研究[J].内蒙古电力技术,2018,36(6):16-20.
- [32]邢华栋,任思宇,张爱军,等.风电汇集站可控高压并联电抗器电压控制策略研究[J].内蒙古电力技术,2018,36(4):1-4.
- 多风电场
- 场景生成法
- 相关性
- NSGA-Ⅱ算法
- 随机多目标无功优化
multiple wind farms - scenario generation method
- correlation
- NSGA-Ⅱ algorithm
- stochastic multi-objective reactive power optimization