配电网分布式储能的分层优化配置方法A hierarchical optimal configuration method for distributed energy storage in distribution networks
刘欣,宁新福,金翼,杨岑玉,钟伟东,诸宇浩
LIU Xin,NING Xinfu,JIN Yi,YANG Cenyu,ZHONG Weidong,ZHU Yuhao
摘要(Abstract):
分布式储能的合理配置不仅可以实现配电网运行的削峰填谷,而且对提升新能源消纳和确保电网安全、可靠、经济运行具有重要意义。考虑用户侧分布式储能的友好互动,研究了含高比例光伏的配电网中分布式储能的分层优化配置问题。上层从经济与环保并重的角度,建立了投资运行成本及分布式光伏最大化消纳的多目标模型;下层考虑分布式储能设备的友好互动对配电网削峰填谷的作用,建立单位联络线功率的日净负荷偏差。针对所建立的非线性、多目标的双层优化模型,采用加权方法将上层多目标模型转换成单目标模型,并采用改进遗传算法进行优化求解。通过改进IEEE 33节点算例进行仿真验证,结果表明所建立的优化模型能够反应储能的投资效益和对新能源消纳的影响,用户的友好互动对分布式储能配置和光伏消纳都有不同程度的影响。
The rational configuration of distributed energy storage can not only realize p peak-shaving and valleyfilling during distribution network operation, but also play an important role in improving the consumption of renewable energy and ensuring the safe, reliable, and economic operation of the power grid. In view of the user-side friendly interaction of distributed energy storage, this paper studies the hierarchical optimal configuration of distributed energy storage in distribution networks with a high proportion of PV. In the upper layer, multi-objective models of investment and operation cost and maximized consumption of distributed PV are established from the perspective of both economy and environmental protection. In the lower layer, the friendly interaction of distributed energy storage devices on peak shaving and valley filling of distribution networks is considered, and the daily net load deviation per unit tie-line power is established. For the established non-linear, multi-objective two-layer optimization model, a weight method is used to convert the multi-objective model in the upper layer into a single-objective one.Moreover, an improved genetic algorithm is used for the optimal solution. The simulation is validated by an improved IEEE 33-node example. The results show that the established optimization model can reflect the investment benefits of energy storage and the impact on new energy consumption. The users' friendly interaction impacts both distributed energy storage configuration and PV consumption in varying degrees.
关键词(KeyWords):
储能;分布式光伏;友好互动;双层多目标;削峰填谷
energy storage;distributed PV;friendly interaction;two-layer multi-objective;peak-shaving and valley-filling
基金项目(Foundation): 国网浙江省电力有限公司省管产业单位科技项目(2021-KJLH-SJ-005)
作者(Author):
刘欣,宁新福,金翼,杨岑玉,钟伟东,诸宇浩
LIU Xin,NING Xinfu,JIN Yi,YANG Cenyu,ZHONG Weidong,ZHU Yuhao
DOI: 10.19585/j.zjdl.202305011
参考文献(References):
- [1] YANG T,ZHANG L,ZHEN L,et al.Fast microgrids formation of distribution network with high penetration of DERs considering reliability[J].Energy,2021,236:121524.
- [2]张俊涛,程春田,申建建,等.考虑风光不确定性的高比例可再生能源电网短期联合优化调度方法[J].中国电机工程学报,2020,40(18):5921-5931.ZHANG Juntao,CHENG Chuntian,SHEN Jianjian,et al.Short-term joint optimal dispatching method of high proportion renewable energy power grid considering wind and scenery uncertainty[J].Proceedings of the CSEE,2020,40(18):5921-5931.
- [3]祖国强,宋晨辉,张春晖,等.蜂巢状综合能源配电系统的组网结构与运行方式[J/OL].电力系统自动化:1-14[2023-04-15]. http://kns. cnki. net/kcms/detail/32.1180.TP. 20230412.1325.002. html. DOI:10.7500/AEPS20221029004.ZU Guoqiang,SONG Chenhui ZHANG Chunhui,et al.Networking structures and operation modes of honeycomb integrated energy distribution system[J/OL].Automation of Electric Power Systems:1-14[2023-04-15].http://kns.cnki. net/kcms/detail/32.1180. TP. 20230412.1325.002.html.DOI:10.7500/AEPS20221029004.
- [4] SUN W,ZHANG J,ZENG P,et al.Energy storage configuration and day-ahead pricing strategy for electricity retailers considering demand response profit[J]. International Journal of Electrical Power&Energy Systems,2022,136:107633.
- [5]吴彬锋,傅颖,陈扬哲,等.考虑紧急备用与光伏出力不确定性的微电网分布式储能规划方法[J].浙江电力,2021,40(9):32-40.WU Binfeng,FU Ying,CHEN Yangzhe,et al.A planning method of distributed energy storage of microgrid considering emergency power reserves and uncertainty of PV output power[J].Zhejiang Electric Power,2021,40(9):32-40.
- [6] DONG W J,ZHANG L M,ZHANG D X,et al.Hierarchical multi-objective planning for integrated energy systems in smart parks considering operational characteristics[J].CSEE Journal of Power and Energy Systems,2022,8(6):1760-1771.
- [7]向育鹏,卫志农,孙国强,等.基于全寿命周期成本的配电网蓄电池储能系统的优化配置[J].电网技术,2015,39(1):264-270.XIANG Yupeng,WEI Zhinong,SUN Guoqiang,et al.Life cycle cost based optimal configuration of battery energy storage system in distribution network[J].Power System Technology,2015,39(1):264-270.
- [8]朱介北,刘东昊,李炳森等.基于CPU工作状态进行温度估算的数据中心服务器功耗模型[J/OL].电力系统自动化:1-14[2023-04-24]. http://kns. cnki. net/kcms/detail/32.1180. TP. 20230411.1610.002. html. DOI:10.7500/AEPS20221029004.ZHU Jiebei,LIU Donghao,LI Bingsen,et al.Power Consumption Model of Server in Data Center Based on Temperature Estimating by CPU Operating Statuses[J/OL].Automation of Electric Power Systems:1-14[2023-04-13].https://kns.cnki.net/kcms/detail/32.1180.TP.20230411.1610.002.html.DOI:10.7500/AEPS20220905004.
- [9] DING Y,XU Q,YANG B.Optimal configuration of hybrid energy storage in integrated energy system[J].Energy Reports,2020,6:739-744.
- [10]李建林,郭斌琪,牛萌,等.风光储系统储能容量优化配置策略[J].电工技术学报,2018,33(6):1189-1196.LI Jianlin,GUO Binqi,NIU Meng,et al.Optimal configuration strategy of energy storage capacity in wind/PV/storage hybrid system[J].Transactions of China Electrotechnical Society,2018,33(6):1189-1196.
- [11]朱向芬.基于粒子群算法的混合储能系统容量优化配置[D].银川:宁夏大学,2014.ZHU Xiangfen. Optimal capacity allocation of hybrid energy storage system based on particle swarm optimization algorithm[D].Yinchuan:Ningxia University,2014.
- [12] DONG W J,LIU K Y,SHENG W X.Integrated optimization planning of multiple energy stations for purpose of low carbon operation[J].CSEE Journal of Power and Energy Systems,2022,PP(99):1-11.
- [13] ZHAO H,WU Q,HU S,et al.Review of energy storage system for wind power integration support[J].Applied energy,2015,137:545-553.
- [14] LEKSAWAT S,SCHMELTER A,ORTJOHANN E,et al. Demonstration of cluster-based power system automation for future smart grids[C]//2016 IEEE International Energy Conference(ENERGYCON).Leuven,Belgium:IEEE,2016:1-6.
- [15]冯斌,胡轶婕,黄刚,等.基于深度强化学习的新型电力系统调度优化方法综述[J/OL].电力系统自动化:1-22.https://kns.cnki.net/kcms/detail/32.1180.TP.20230331.1354.004.html.DOI:10.7500/AEPS20220228002.FENG Bin,HU Yijie,HUANG Gang,et al.Review on optimization methods for new power system dispatch based on deep reinforcement learning[J/OL]. Automation of Electric Power Systems:1-22[2023-04-13]. https://kns.cnki. net/kcms/detail/32.1180. TP. 20230331.1354.004.html.DOI:10.7500/AEPS20220228002.
- [16] DULOUT J,JAMMES B,ALONSO C,et al. Optimal sizing of a lithium battery energy storage system for gridconnected photovoltaic systems[C]//2017 IEEE Second International Conference on DC Microgrids(ICDCM).Nuremburg,Germany:IEEE,2017:582-587.
- [17]黄蔓云,费有蝶,卫志农,等.高比例新能源渗透下的交直流配电网预测辅助区间状态估计[J/OL].电力系统自动化:1-11.https://kns.cnki.net/kcms/detail//32.1180.TP.20230220.1054.002. html. DOI:10.7500/AEPS20220804001.HUANG Manyun,FEI Youdie,WEI Zhinong,et al.Interval state estimation aided by forcasting for AC/DC distribution network with high penetration of renewable energy[J/OL]. Automation of Electric Power Systems:1-11[2023-04-13].https://kns.cnki.net/kcms/detail//32.1180.TP.20230220.1054.002.html.DOI:10.7500/AEPS20220804001.
- [18] ZHEN L,ZHANG L,YANG T,et al.Simultaneous prediction for multiple source-loads based sliding time window and convolutional neural network[J]. Energy Reports,2022,8:6110-6125.
- [19]梁亮,李建林,惠东.大型风电场用储能装置容量的优化配置[J].高电压技术,2011,37(4):930-936.LIANG Liang,LI Jianlin,HUI Dong. Optimization configuration for capacity of energy storage system in largescale wind farm[J]. High Voltage Engineering,2011,37(4):930-936.
- [20]潘学萍,张源,鞠平,等.太阳能光伏电站等效建模[J].电网技术,2015,39(5):1173-1178.PAN Xueping,ZHANG Yuan,JU Ping,et al.Equivalent modeling for photovoltaic power station[J].Power System Technology,2015,39(5):1173-1178.
- [21]田培根,肖曦,丁若星,等.自治型微电网群多元复合储能系统容量配置方法[J].电力系统自动化,2013,37(1):168-173.TIAN Peigen,XIAO Xi,DING Ruoxing,et al.A capacity configuring method of composite energy storage system in autonomous multi-microgrid[J]. Automation of Electric Power Systems,2013,37(1):168-173.
- [22] SEDGHI M,ALIAKBAR-GOLKAR M,HAGHIFAM M-R. Distribution network expansion considering distributed generation and storage units using modified PSO algorithm[J]. International Journal of Electrical Power&Energy Systems,2013,52:221-230.
- [23] ZHANG L,TANG W,LIU Y,et al.Multiobjective optimization and decision-making for DG planning considering benefits between distribution company and DGs owner[J].International Journal of Electrical Power&Energy Systems,2015,73:465-474.
- [24]麻秀范,崔换君.改进遗传算法在含分布式电源的配电网规划中的应用[J].电工技术学报,2011,26(3):175-181.MA Xiufan,CUI Huanjun.An improved genetic algorithm for distribution network planning with distributed generation[J]. Transactions of China Electrotechnical Society,2011,26(3):175-181.
- [25] BARAN M E,WU F F.Network reconfiguration in distribution systems for loss reduction and load balancing[J].IEEE Power Engineering Review,1989,9(4):101-102.
- [26]张立梅.配电网分布式电源规划及其综合评估研究[D].北京:中国农业大学,2010.Zhang Limei.Research on distributed generators planning of distribution network and its comprehensive evaluation[D].Beijing:China Agriculture University,2010.
- 储能
- 分布式光伏
- 友好互动
- 双层多目标
- 削峰填谷
energy storage - distributed PV
- friendly interaction
- two-layer multi-objective
- peak-shaving and valley-filling