考虑源荷不确定性的风光水蓄互补系统优化调度策略An optimal scheduling strategy for a wind-solar-hydropower-pumped storage complementary system considering source-load uncertainty
何英静,王湘,但扬清,陈晴悦,李海波,鲁宗相
HE Yingjing,WANG Xiang,DAN Yangqing,CHEN Qingyue,LI Haibo,LU Zongxiang
摘要(Abstract):
以提升新型电力系统灵活性调节能力为目的,针对大规模新能源并网带来的波动性和不确定性,提出了一种考虑源荷不确定性的风光水蓄互补系统优化调度策略。以水电站和抽水蓄能电站综合发电量最大为目标函数建立了优化调度模型,并提出了灵活性调节能力量化指标。通过对采用K-means算法聚类得到的4个具有季节性差异的典型日场景以及特殊极端场景进行生产模拟,分析水电及抽水蓄能的灵活性调节能力。结果表明,该策略能够合理分配各个电源出力,实现了优化调度。
To enhance the flexibility regulation capability of new-type power systems and address the volatility and uncertainty brought by large-scale renewable energy integration, an optimal scheduling strategy for a wind-solarhydro-pumped storage complementary system considering source-load uncertainty is proposed. An optimal scheduling model is established with the objective of maximizing the combined generation of hydropower stations and pumped storage power stations, and a quantitative flexibility regulation capability index is introduced. Production simulations are performed for four typical daily scenarios with seasonal variations and one special extreme scenario, obtained using K-means clustering. The flexibility regulation capability of hydropower and pumped storage is analyzed. The results show that the strategy can reasonably allocate the generation output, thereby achieving optimal scheduling.
关键词(KeyWords):
调节能力;抽水蓄能;源荷不确定性;K-means;梯级水电
regulation capability;pumped storage;source-load uncertainty;K-means;cascade hydropower
基金项目(Foundation): 国家电网有限公司总部科技项目(4000-202319075A-1-1-ZN)
作者(Author):
何英静,王湘,但扬清,陈晴悦,李海波,鲁宗相
HE Yingjing,WANG Xiang,DAN Yangqing,CHEN Qingyue,LI Haibo,LU Zongxiang
DOI: 10.19585/j.zjdl.202504011
参考文献(References):
- [1]舒印彪,赵勇,赵良,等.“双碳”目标下我国能源电力低碳转型路径[J].中国电机工程学报,2023,43(5):1663-1672.SHU Yinbiao,ZHAO Yong,ZHAO Liang,et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J].Proceedings of the CSEE,2023,43(5):1663-1672.
- [2]舒印彪,陈国平,贺静波,等.构建以新能源为主体的新型电力系统框架研究[J].中国工程科学,2021,23(6):61-69.SHU Yinbiao,CHEN Guoping,HE Jingbo,et al.Building a new electric power system based on new energy sources[J].Strategic Study of CAE,2021,23(6):61-69.
- [3]刘瀚琛,王冲,鞠平.双碳背景下综合能源电力系统弹性分析与提升研究综述[J].电气工程学报,2023,18(2):108-124.LIU Hanchen,WANG Chong,JU Ping.Review on resilience analysis and enhancement of integrated energy power systems considering dual carbon goal[J].Journal of Electrical Engineering,2023,18(2):108-124.
- [4] SONG G H,CAO B,CHANG L C. Review of gridforming inverters in support of power system operation[J].Chinese Journal of Electrical Engineering,2022,8(1):1-15.
- [5]王红君,陈智晴,赵辉,等.考虑风光荷不确定性的配电网故障恢复策略[J].电网技术,2022,46(11):4356-4364.WANG Hongjun,CHEN Zhiqing,ZHAO Hui,et al.Reconstruction strategies for fault recovery of active distribution network with distributed generation uncertainties[J].Power System Technology,2022,46(11):4356-4364.
- [6]李晏君,何雨微,盛方,等.兼顾风-光-荷不确定性与相关性的配电网多目标重构方法[J].浙江电力,2024,43(8):20-27.LI Yanjun,HE Yuwei,SHENG Fang,et al. A multiobjective reconfiguration method for distribution networks considering the wind-photovoltaic-load uncertainty and correlation[J]. Zhejiang Electric Power,2024,43(8):20-27.
- [7]傅铮,王峰,王若宇,等.基于时序生产模拟的需求侧响应促进新能源消纳量化分析[J].浙江电力,2024,43(9):39-48.FU Zheng,WANG Feng,WANG Ruoyu,et al.Quantitative analysis of renewable energy consumption promoted by demand-side re-sponse based on time-series production simulation[J].Zhejiang Electric Power,2024,43(9):39-48.
- [8]潘建辉,张宁,雍培,等.面向海量灵活性资源的两阶段分布式协同调度方法[J].电力系统自动化,2023,47(15):67-79.PAN Jianhui,ZHANG Ning,YONG Pei,et al.Two-stage distributed collaborative dispatching method for massive flexible resources[J].Automation of Electric Power Systems,2023,47(15):67-79.
- [9]李宏仲,叶翔宇.考虑灵活性供需匹配的电力系统自适应时间尺度调度策略[J].电力系统自动化,2023,47(15):122-132.LI Hongzhong,YE Xiangyu. Adaptive Time-scale dispatching strategy for power system considering flexibility supply-demand matching[J]. Automation of Electric Power Systems,2023,47(15):122-132.
- [10] CAI Q R,QING J,ZHONG C Y,et al.Temporal and spatial heterogeneity analysis of wind and solar power complementarity and source-load matching characteristics in China[J]. Energy Conversion and Management,2024,315:118770.
- [11]张俊涛,程春田,于申,等.水电支撑新型电力系统灵活性研究进展、挑战与展望[J].中国电机工程学报,2024,44(10):3862-3885.ZHANG Juntao,CHENG Chuntian,YU Shen,et al.Progress, challenges and prospects of research on hydropower supporting the flexibility of new power systems[J].Proceedings of the CSEE,2024,44(10):3862-3885.
- [12] MING B,LIU P,CHENG L,et al.Optimal daily generation scheduling of large hydro-photovoltaic hybrid power plants[J].Energy Conversion and Management,2018,171(1):528-540.
- [13]李洋,尹逊虎,张思,等.考虑多元发电资源灵活性的电力系统紧急调峰调度方法[J].浙江电力,2023,42(8):37-45.LI Yang,YIN Xunhu,ZHANG Si,et al.Emergency peak shaving dispatching method for power system considering flexibility of multiple power generation resources[J].Zhejiang Electric Power,2023,42(8):37-45.
- [14]唐海华,黄春雷,丁杰.混合式抽水蓄能电站优化调度策略[J].电力系统自动化,2011,35(21):40-45.TANG Haihua,HUANG Chunlei,DING Jie.Optimal dispatching schedule of hybrid pumped-storage power station[J]. Automation of Electric Power Systems,2011,35(21):40-45.
- [15]黄景光,黄静梅,吴巍,等.含混合式抽水蓄能电站的梯级水电站优化调度[J].水电能源科学,2020,38(5):76-80.HUANG Jingguang,HUANG Jingmei,WU Wei,et al.Optimal dispatching of cascade hydropower station with mixed pumping storage power station[J]. Water Resources and Power,2020,38(5):76-80.
- [16]惠振国,艾澜,常鹏霞,等.计及风光出力相关性的风光水储互补系统优化调度[J].水电能源科学,2024,42(8):218-222.HUI Zhenguo,AI Lan,CHANG Pengxia,et al. Optimal scheduling of wind-solar-water-storage complementary system considering the correlation of wind-solar output[J].Water Resources and Power,2024,42(8):218-222.
- [17]顾慧杰,周华锋,彭超逸,等.含抽水蓄能电站的高比例新能源发电系统多时间尺度调度模型[J].上海交通大学学报,2024,58(12):1957-1967.GU Huijie,ZHOU Huafeng,PENG Chaoyi,et al.A Multitime scale scheduling model for power generation systemswitha high proportion of new energy including pumped storage power stations[J]. Journal of Shanghaijiaotong University,2024,2024,58(12):1957-1967.
- [18]何奇,张宇,邓玲,等.基于水电储能调节的风光水发电联合优化调度策略[J].广东电力,2024,37(3):12-24.HE Qi,ZHANG Yu,DENG Ling,et al. Joint optimal scheduling strategy of wind, photovoltaic and water storage power generation considering hydropower storage regulation[J]. Guangdong Electric Power,2024,37(3):12-24.
- [19] FERNANDES C,FRíAS P,OLMOS L.Expanding interconnection capacity to integrate intermittent generation in the Iberian Peninsula[J]. IET Renewable Power Generation,2013,7(1):45-54.
- [20] LANGRENE N,VAN ACKOOIJ W,BREANT F. Dynamic constraints for aggregated units:formulation and application[J].IEEE Transactions on Power Systems,2011,26(3):1349-1356.
- [21]申建建,王月,程春田,等.水风光互补系统灵活性需求量化及协调优化模型[J].水利学报,2022,53(11):1291-1303.SHEN Jianjian,WANG Yue,CHENG Chuntian,et al.Flexibility demand quantification and optimal operation model of water-wind-solar complementary system[J].Journal of Hydraulic Engineering,2022,53(11):1291-1303.
- [22]张俊涛,甘霖,程春田,等.大规模风光并网条件下水电灵活性量化及提升方法[J].电网技术,2020,44(9):3227-3237.ZHANG Juntao,GAN Lin,CHENG Chuntian,et al.Quantification and promotion of hydropower flexibility with large-scale wind and solar power incorporated into grid[J].Power System Technology,2020,44(9):3227-3237.
- [23]罗远翔,王云龙,冯扬,等.高比例新能源并网含抽蓄的联合系统变时段日前调度[J].电力系统自动化,2024,48(8):115-121.LUO Yuanxiang,WANG Yunlong,FENG Yang,et al.Variable-time day-ahead dispatching of high-proportion new energy grid-connected joint system with pumped storage[J].Automation of Electric Power Systems,2024,48(8):115-121.
- [24]夏金磊,唐翊杰,王玲玲,等.考虑灵活调节能力的梯级水风光蓄互补系统日前优化运行策略[J/OL].上海交通大学学报,1-25[2024-09-10]. https://doi. org/10.16183/j.cnki.jsjtu.2023.419.XIA Jinlei,TANG Yijie,WANG Lingling,et al.Optimal operation strategy of cascade hydro-wind-solar-pumped storage complementary system considering the flexible regulation ability[J/OL]. Journal of Shanghai Jiaotong University,1-25[2024-09-10].https://doi.org/10.16183/j.cnki.jsjtu.2023.419.
- [25]张克诚.抽水蓄能电站水能设计[M].北京:中国水利水电出版社,2007.
- [26] KHAN S S,AHMAD A.Cluster center initialization algorithm for K-means clustering[J].Pattern Recognition Letters,2004,25(11):1293-1302.
- 调节能力
- 抽水蓄能
- 源荷不确定性
- K-means
- 梯级水电
regulation capability - pumped storage
- source-load uncertainty
- K-means
- cascade hydropower