浙江电力

2021, v.40;No.307(11) 38-45

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进麻雀算法-支持向量机的输电线路故障诊断
Transmission Line Fault Diagnosis Based on Support Vector Machine Optimized by Improved Sparrow Search Algorithm

石万宇,魏军强,赵云灏
SHI Wanyu,WEI Junqiang,ZHAO Yunhao

摘要(Abstract):

建立了一种数据驱动的输电线路雷击故障分类诊断模型,提出了改进的麻雀搜索算法优化支持向量机参数的方法,并实现输电线路雷击故障分类诊断。利用自适应t分布算法改进麻雀搜索算法,克服了麻雀搜索算法易陷入局部最优的缺点,从而提高麻雀搜索方法优化能力。利用改进后的算法对SVM(支持向量机)参数进行寻优,提高分类准确率。利用输电线路故障分析与雷电定位系统数据,选取关键故障特征构成样本数据集,利用t SSA-SVM(自适应t分布改进的麻雀搜索算法-支持向量机)构建输电线路故障诊断分类模型。实例分析表明,该模型可有效实现基于数据分析的输电线路雷击故障诊断分类,所提算法应用于故障诊断分类的准确率优于经典SVM,而且算法效率显著优于PSO-SVM(粒子群算法-支持向量机)故障诊断分类算法。
This paper establishes a data-driven transmission line lightning fault classification and diagnosis model, proposes an improved sparrow search algorithm to optimize the parameters of the support vector machine, and realizes the transmission line lightning fault classification and diagnosis. First, the adaptive t-distribution algorithm is used to improve the sparrow search algorithm, which overcomes the shortcomings of the sparrow search algorithm that is easy to fall into the local optimum, thereby improving the optimization ability of the sparrow search method. Then the improved algorithm is used to optimize the SVM parameters to improve the classification accuracy. Finally, the transmission line fault analysis and lightning location system data are used, and the key fault characteristics are selected to form a sample data set, and the tSSA-SVM is used to construct the transmission line fault diagnosis and classification model. Case analysis shows that the model can effectively realize the lightning fault diagnosis and classification of transmission lines based on data analysis. The accuracy of the proposed algorithm in fault diagnosis classification is higher than that of the classic SVM, and the algorithm efficiency is superior to fault diagnosis and classification algorithm based on the PSO-SVM(particle swarm optimization-support vector machine).

关键词(KeyWords): 麻雀搜索算法;自适应t分布;支持向量机;输电线路;雷击故障
sparrow search algorithm;adaptive t-distribution;support vector machine;transmission line;lightning failure

Abstract:

Keywords:

基金项目(Foundation): 国家重点研发计划(2021YFE0102400)

作者(Author): 石万宇,魏军强,赵云灏
SHI Wanyu,WEI Junqiang,ZHAO Yunhao

DOI: 10.19585/j.zjdl.202111006

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享