考虑温度应力动态变化的继电保护装置可靠性研究A study on the reliability of relay protection devices considering dynamic changes in temperature stress
龚杰,徐习东,杨剑友,方愉冬
GONG Jie,XU Xidong,YANG Jianyou,FANG Yudong
摘要(Abstract):
继电保护装置内部包含大量的电子器件,环境的温湿度、振动等对继电保护装置的可靠性都有影响。针对安装在开关柜中的保护装置在运行期间受到的温度应力的复杂动态变化,将环境温度视为一个服从正态分布的随机变量,结合Arrhenius模型与Weibull模型,由条件概率密度函数以及温度应力分布的概率密度函数推导出保护装置失效的全概率密度函数、可靠度函数和失效率函数。通过数值计算方法,得到温度的均值参数和方差参数变化对保护装置可靠性的影响,为继电保护装置在现场运行的可靠性研究提供理论依据。
Relay protection devices contain numerous electronic components, and environmental factors such as temperature, humidity, and vibration can impact their reliability. Addressing the complex dynamic changes in temperature stress experienced by protection devices installed in switchgear during operation, this study considers environmental temperature as a random variable following a normal distribution. Based on the Arrhenius model and the Weibull model, conditional probability density functions along with probability density functions of temperature stress distribution are used to derive the overall probability density function, reliability function, and failure rate function of protection devices. Through numerical computation, the study assesses the impact of changes in temperature mean and variance parameters on the reliability of protection devices, providing a theoretical basis for reliability research on relay protection devices during field operation.
关键词(KeyWords):
继电保护装置;可靠性;温度应力;正态分布;Arrhenius模型;Weibull模型
relay protection device;reliability;temperature stress;normal distribution;Arrhenius model;Weibull model
基金项目(Foundation): 国家自然科学基金资助项目(62293502,62293500);; 国网浙江省电力有限公司温州供电公司科技项目(WZ920000857)
作者(Author):
龚杰,徐习东,杨剑友,方愉冬
GONG Jie,XU Xidong,YANG Jianyou,FANG Yudong
DOI: 10.19585/j.zjdl.202404011
参考文献(References):
- [1]陈国平,王德林,裘愉涛,等.继电保护面临的挑战与展望[J].电力系统自动化,2017,41(16):1-11.CHEN Guoping,WANG Delin,QIU Yutao,et al. Challenges and development prospects of relay protection technology[J].Automation of Electric Power Systems,2017,41(16):1-11.
- [2]徐志超,李晓明,杨玲君.基于全寿命周期成本的继电保护装置退出时间评估[J].电力系统自动化,2013,37(21):151-155.XU Zhichao,LI Xiaoming,YANG Lingjun.Evaluation for exit time of relay protection devices based on life cycle cost[J]. Automation of Electric Power Systems,2013,37(21):151-155.
- [3]薛安成,王睿琛,刘蔚,等.继电保护装置恒定失效率估算方法[J].电力系统自动化,2012,36(4):6-10.XUE Ancheng,WANG Ruichen,LIU Wei,et al.Estimation methods for constant failure rate of protection equipments[J].Automation of Electric Power Systems,2012,36(4):6-10.
- [4]罗琨,时永肖,李正新,等.智能变电站继电保护装置寿命模型及其辨识方法[J].智慧电力,2021,49(1):96-101.LUO Kun,SHI Yongxiao,LI Zhengxin,et al.A life model and its identification method for relay protection device in smart station[J].Smart Power,2021,49(1):96-101.
- [5]易永辉.继电保护装置寿命分析及寿命影响机理研究[J].电力系统保护与控制,2013,41(2):79-83.YI Yonghui.Research of relay protection device’s life and relative effect mechanism[J]. Power System Protection and Control,2013,41(2):79-83.
- [6]薛安成,罗麟,景琦,等.基于三参数Weibull分布的继电保护装置老化失效率估算[J].电力系统保护与控制,2014,42(24):72-78.XUE Ancheng,LUO Lin,JING Qi,et al.Research on aging failure rate estimation of protective relay based on three-parameter Weibull distribution[J]. Power System Protection and Control,2014,42(24):72-78.
- [7]赵骞,贾祥,程志君,等.部件寿命服从威布尔分布时典型系统的寿命与剩余寿命估计[J].系统工程与电子技术,2019,41(7):1665-1671.ZHAO Qian,JIA Xiang,CHENG Zhijun,et al.Estimation of lifetime and residual life of typical system with Weibull distributed components[J].Systems Engineering and Electronics,2019,41(7):1665-1671.
- [8]王嘉琦,徐岩,彭雅楠,等.基于灰色-三参数威布尔分布模型的继电保护装置可靠性参数估计[J].电网技术,2019,43(4):1354-1360.WANG Jiaqi,XU Yan,PENG Yanan,et al.Estimation of reliability parameters of protective relays based on greythree-parameter weibull distribution model[J].Power System Technology,2019,43(4):1354-1360.
- [9]叶远波,谢民,陈晓东,等.基于故障率分析的继电保护系统状态检修策略[J].电力系统保护与控制,2021,49(7):167-173.YE Yuanbo,XIE Min,CHEN Xiaodong,et al. A condition-based maintenance strategy for a relay protection system based on failure probability analysis[J].Power System Protection and Control,2021,49(7):167-173.
- [10] KECECIOGLU D,JACKS J A.The Arrhenius,Eyring,inverse power law and combination models in accelerated life testing[J].Reliability Engineering,1984,8(1):1-9.
- [11] PADGETT W J,TOMLINSON M A.Inference from accelerated degradation and failure data based on Gaussian process models[J].Lifetime Data Analysis,2004,10(2):191-206.
- [12] KLINGER D J.On the notion of activation energy in reliability:Arrhenius,Eyring,and thermodynamics[C]//Annual Reliability and Maintainability Symposium.1991 Proceedings.Orlando,FL,USA.IEEE,2002:295-300.
- [13] PECK D S.Comprehensive model for humidity testing correlation[C]//24th International Reliability Physics Symposium.Anaheim,CA,USA.IEEE,1986:44-50.
- [14]张国龙,蔡金燕,梁玉英,等.电子装备多应力加速退化试验技术及可靠性评估方法研究[J].航空学报,2013,34(12):2815-2822.ZHANG Guolong,CAI Jinyan,LIANG Yuying,et al.Research on reliability assessment method of electronic equipment based on multi-stress ADT[J].Acta Aeronautica et Astronautica Sinica,2013,34(12):2815-2822.
- [15] LI W Y,VAAHEDI E,CHOUDHURY P.Power system equipment aging[J].IEEE Power and Energy Magazine,2006,4(3):52-58.
- [16] LING J,PAN J.A new method for selection of population distribution and parameter estimation[J].Reliability Engineering&System Safety,1998,60(3):247-255.
- [17] GANGULY A,KUNDU D,MITRA S.Bayesian analysis of a simple step-stress model under weibull lifetimes[J].IEEE Transactions on Reliability,2015,64(1):473-485.
- [18] ARRIAZA A,SORDO M A,SUáREZ-LLORENS A.Comparing residual lives and inactivity times by transform stochastic orders[J]. IEEE Transactions on Reliability,2017,66(2):366-372.
- [19] CUI W,YAN Z Z,PENG X Y. Statistical analysis for constant-stress accelerated life test with weibull distribution under adaptive type-II hybrid censored data[J].IEEE Access,1809,7:165336-165344.
- [20] LIU Q B,SHI W K,LI K H,et al.Performance degradation prediction and reliability evaluation of rubber aging in natural environment under alternating cyclic thermal load[J].IEEE Access,2019,7:63027-63035.
- [21] SAMANTA D,GUPTA A,KUNDU D. Analysis of weibull step-stress model in presence of competing risk[J].IEEE Transactions on Reliability,2019,68(2):420-438.
- [22]师元康,姜振超,赵书涛.基于内部温度的继电保护装置时变失效率研究[J].电力系统保护与控制,2016,44(4):123-128.SHI Yuankang,JIANG Zhenchao,ZHAO Shutao. Research on time-varying failure rate of protection devices based on internal temperature[J]. Power System Protection and Control,2016,44(4):123-128.
- [23] CHEN L,QIU Y T,CHEN J N,et al.Reliability analysis of autonomous controllable protection device in power system[C]//2020 8th International Conference on Power Electronics Systems and Applications(PESA). Hong Kong,China. IEEE,2020:1-5.