浙江电力

2024, v.43;No.344(12) 28-37

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

计及动态相关性的配电网稳态电能质量智能评价方法
An intelligent evaluation method for steady-state power quality in distribution networks incorporating dynamic correlations

郭祥富,张旭,刘书铭,王得道,李琼林,贾子昊,孙媛媛
GUO Xiangfu,ZHANG Xu,LIU Shuming,WANG Dedao,LI Qionglin,JIA Zihao,SUN Yuanyuan

摘要(Abstract):

为准确高效地评价配电网关键节点的稳态电能质量,提出一种计及动态相关性的电能质量稳态指标分层智能评价方法。首先,利用MIC(最大信息系数)分析配电网关键节点电能质量稳态指标之间的相关性,建立配电网关键节点稳态电能质量综合评价体系。其次,利用CRITIC权重法和指标相关性分析结果,计算评价体系中各指标的综合权重。最后,将综合评价得分作为期望值,结合LSTM(长短期记忆)神经网络建立配电网关键节点稳态电能质量智能综合评价模型,并利用实测样本数据对神经网络进行优化训练。实测数据仿真结果表明,提出的评价方法可以在保证准确性的同时降低评价过程的复杂度,极大提高了评价效率。
To accurately and efficiently evaluate the steady-state power quality at key nodes in a distribution network, a hierarchical intelligent evaluation method for steady-state power quality metrics incorporating dynamic correlations is proposed. First, the maximum information coefficient(MIC) is used to analyze the relationships among steady-state power quality metrics at these key nodes; then an integrated evaluation system for steady-state power quality is developed. Next, the CRITIC, an objective weighting method, along with the results from the correlation analysis, is employed to calculate the overall weights of each metric in the evaluation system. Finally, the aggregated evaluation score is used as the expected value, and an integrated intelligent evaluation model for steady-state power quality at key nodes is developed using a long short-term memory(LSTM). The LSTM is optimized with the measured sample data. Simulation results demonstrate that the proposed method significantly reduces the complexity of the evaluation process while maintaining accuracy, thereby greatly enhancing evaluation efficiency.

关键词(KeyWords): 配电网关键节点;稳态电能质量;最大信息系数;CRITIC;LSTM
key nodes in distribution network;steady-state power quality;MIC;CRITIC;LSTM

Abstract:

Keywords:

基金项目(Foundation): 国家电网公司总部科技项目(5400-202124153A-0-0-00)

作者(Author): 郭祥富,张旭,刘书铭,王得道,李琼林,贾子昊,孙媛媛
GUO Xiangfu,ZHANG Xu,LIU Shuming,WANG Dedao,LI Qionglin,JIA Zihao,SUN Yuanyuan

DOI: 10.19585/j.zjdl.202412003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享