基于半端到端的预测-决策一体化最优线路开断调度方法A semi-end-to-end integrated prediction and decision-making approach for optimal transmission line switching scheduling
孙国强,左岩,黄蔓云,孙康,王齐辉
SUN Guoqiang,ZUO Yan,HUANG Manyun,SUN Kang,WANG Qihui
摘要(Abstract):
随着新能源在电力系统中的渗透率逐步增加,其发电的波动性和间歇性对电力系统的安全、稳定、经济运行带来了严峻挑战。针对高比例新能源并网场景下,两阶段序贯预测-决策调度方式存在的预测精度与决策收益不匹配的问题,提出了一种基于半端到端框架的预测与决策一体化的最优线路开断方法。通过引入MPA(海洋捕食者算法)优化预测模型组合权重,将预测与决策过程耦合,形成以系统运行成本为训练目标的闭环结构,从而实现预测模型的优化。最后,使用改进的IEEE 30节点系统和IEEE 118节点系统进行算例分析,验证了所提方法在降低系统运行成本、减少弃光量和机组再调度功率、提高新能源消纳能力等方面的有效性。
With growing penetration of renewable energy in power systems, its inherent volatility and intermittency pose significant challenges to system security, stability, and economic operation. To address the mismatch between prediction accuracy and decision-making benefits in conventional two-stage sequential forecast-decision-making scheduling under high renewable integration scenarios, this paper proposes an integrated prediction-decisionmaking framework for optimal transmission line switching(TLS) based on a semi-end-to-end architecture. By employing the Marine predator algorithm(MPA) to optimize the weighting of prediction model ensembles, the method couples forecasting and decision-making-making processes into a closed-loop structure trained with system operational cost as the objective, so as to optimize the prediction model. Case studies on modified IEEE 30-bus and 118-bus systems demonstrate the method's effectiveness in reducing operational costs, decreasing PV curtailment and generator rescheduling power, and enhancing renewable energy accommodation capability.
关键词(KeyWords):
半端到端;输电线路开断;高比例新能源;预测决策一体化
semi-end-to-end;TLS;high proportion renewable energy;integrated prediction and decision-making
基金项目(Foundation): 国家自然科学基金(U24B2088)
作者(Author):
孙国强,左岩,黄蔓云,孙康,王齐辉
SUN Guoqiang,ZUO Yan,HUANG Manyun,SUN Kang,WANG Qihui
DOI: 10.19585/j.zjdl.202510007
参考文献(References):
- [1]周孝信,陈树勇,鲁宗相,等.能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904.ZHOU Xiaoxin,CHEN Shuyong,LU Zongxiang,et al.Technology features of the new generation power system in China[J].Proceedings of the CSEE,2018,38(7):1893-1904.
- [2]张沈习,王丹阳,程浩忠,等.双碳目标下低碳综合能源系统规划关键技术及挑战[J].电力系统自动化,2022,46(8):189-207.ZHANG Shenxi,WANG Danyang,CHENG Haozhong,et al.Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems,2022,46(8):189-207.
- [3]卓振宇,张宁,谢小荣,等.高比例可再生能源电力系统关键技术及发展挑战[J].电力系统自动化,2021,45(9):171-191.ZHUO Zhenyu,ZHANG Ning,XIE Xiaorong,et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J].Automation of Electric Power Systems,2021,45(9):171-191.
- [4]张潮,谢珣,顾卫祥,等.考虑特高压直流输电影响的省间电力现货市场协调交易方法[J].浙江电力,2024,43(5):83-90.ZHANG Chao,XIE Xun,GU Weixiang,et al.A coordinated trading method for the inter-provincial electricity spot market considering the impact of UHVDC transmission systems[J]. Zhejiang Electric Power,2024,43(5):83-90.
- [5] KHANABADI M,FU Y,LIU C.Decentralized transmission line switching for congestion management of interconnected power systems[J]. IEEE Transactions on Power Systems,2018,33(6):5902-5912.
- [6]赵高帅,罗涛,闫大威,等.考虑源荷相关性及不确定性的配电网网架规划方法[J].浙江电力,2024,43(10):65-74.ZHAO Gaoshuai,LUO Tao,YAN Dawei,et al.A framework planning method for distribution networks considering the source-load correlation and uncertainty[J]. Zhejiang Electric Power,2024,43(10):65-74.
- [7]杨知方,钟海旺,夏清,等.输电网结构优化问题研究综述和展望[J].中国电机工程学报,2016,36(2):426-434.YANG Zhifang,ZHONG Haiwang,XIA Qing,et al.Review and prospect of transmission topology optimization[J].Proceedings of the CSEE,2016,36(2):426-434.
- [8]王文倬,谢丁,谢醉冰,等.考虑集群划分的分布式光伏无功电压控制策略[J].浙江电力,2024,43(7):64-75.WANG Wenzhuo,XIE Ding,XIE Zuibing,et al.A reactive voltage control strategy for distributed PV based on cluster segmentation[J].Zhejiang Electric Power,2024,43(7):64-75.
- [9]沈政委,汤涌,易俊,等.用于电网拓扑优化的输电线开断控制研究综述[J].电网技术,2020,44(2):475-483.SHEN Zhengwei,TANG Yong,YI Jun,et al.Review of research on transmission switching control for network topology optimization[J].Power System Technology,2020,44(2):475-483.
- [10] FISHER E B,O′NEILL R P,FERRIS M C. Optimal transmission switching[J]. IEEE Transactions on Power Systems,2008,23(3):1346-1355.
- [11] HEDMAN K W,O′NEILL R P,FISHER E B,et al.Optimal transmission switching with contingency analysis[J].IEEE Transactions on Power Systems,2009,24(3):1577-1586.
- [12] HENNEAUX P,KIRSCHEN D S.Probabilistic security analysis of optimal transmission switching[J]. IEEE Transactions on Power Systems,2016,31(1):508-517.
- [13]张旋,张玉敏,吉兴全,等.基于目标级联分析法的输电网结构优化[J].电力自动化设备,2023,43(2):218-224.ZHANG Xuan,ZHANG Yumin,JI Xingquan,et al.Optimal transmission switching based on analytical target cascading method[J].Electric Power Automation Equipment,2023,43(2):218-224.
- [14] HEDMAN K,FERRIS M,O’NEILL R,et al. Cooptimization of generation unit commitment and transmission switching with N-1 reliability[C]//IEEE PES General Meeting. July 25-29,2010,Minneapolis,MN,USA:IEEE,2010:1.
- [15]张亚超,刘开培,秦亮,等.基于聚类经验模态分解-样本熵和优化极限学习机的风电功率多步区间预测[J].电网技术,2016,40(7):2045-2051.ZHANG Yachao,LIU Kaipei,QIN Liang,et al. Wind power multi-step interval prediction based on ensemble empirical mode decomposition-sample entropy and optimized extreme learning machine[J].Power System Technology,2016,40(7):2045-2051.
- [16]黎敏,林湘宁,张哲原,等.超短期光伏出力区间预测算法及其应用[J].电力系统自动化,2019,43(3):10-16.LI Min,LIN Xiangning,ZHANG Zheyuan,et al.Interval prediction algorithm for ultra-short-term photovoltaic output and its application[J]. Automation of Electric Power Systems,2019,43(3):10-16.
- [17] LI G,CHIANG H D.Toward cost-oriented forecasting of wind power generation[J]. IEEE Transactions on Smart Grid,2018,9(4):2508-2517.
- [18] ZHANG Y F,WEN H L,WU Q W.A contextual bandit approach for value-oriented prediction interval forecasting[J].IEEE Transactions on Smart Grid,2023,15(2):2271-2281.
- [19] WANG Y Z,WANG J X,ZHANG H R,et al.Bridging prediction and decision:Advances and challenges in datadriven optimization[J].Nexus,2025,2(1):100057.
- [20] AMOS B,KOLTER J Z.OptNet:differentiable optimization as a layer in neural networks[C]//International Conference on Machine Learning,[S.l.:s.n.],2017:136-145.
- [21] ELMACHTOUB A N,GRIGAS P.Smart“predict,then optimize”[J].Management Science,2021,68(1):9-26.
- [22]许多,徐潇源,秦放,等.面向光储电站运行收益提升的光伏功率价值导向预测方法[J].电力系统自动化,2025,49(4):152-164.XU Duo,XU Xiaoyuan,QIN Fang,et al.Value-oriented photovoltaic power forecasting method for operation revenue improvement of photovoltaic-energy storage plants[J].Automation of Electric Power Systems,2025,49(4):152-164.
- [23] CHEN X B,LIU Y K,WU L. Towards improving unit commitment economics:an add-on tailor for renewable energy and reserve predictions[J]. IEEE Transactions on Sustainable Energy,2024,15(4):2547-2566.
- [24] SANG L W,XU Y L,LONG H,et al.Safety-aware semiend-to-end coordinated decision model for voltage regulation in active distribution network[J].IEEE Transactions on Smart Grid,2022,14(3):1814-1826.
- [25] FARAMARZI A,HEIDARINEJAD M,MIRJALILI S,et al.Marine predators algorithm:a nature-inspired metaheuristic[J].Expert Systems with Applications,2020,152:113377.
- [26] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
- [27] ELMAN J L.Finding structure in time[J].Cognitive Science,1990,14(2):179-211.
- [28] RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(1):533-536.
- [29] SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
- [30]王齐辉,孙国强,陈胜,等.基于深度学习的最优线路开断分布鲁棒优化调度方法[J].电力自动化设备,2025,45(5):218-224.WANG Qihui,SUN Guoqiang,CHEN Sheng,et al.Distributionally robust optimal dispatching method of optimal transmission switching based on deep learning[J].Electric Power Automation Equipment,2025,45(5):218-224.