浙江电力

2022, v.41;No.317(09) 50-57

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

考虑条件风险价值和热网动态特性的电-热系统储能鲁棒优化配置
Robust optimization configuration of energy storage in electric-thermal system considering CVaR and dynamic characteristics of heat networks

徐文军,吴梦凯,潘夏,邱逸,叶尚兴,郭创新
XU Wenjun,WU Mengkai,PAN Xia,QIU Yi,YE Shangxing,GUO Chuangxin

摘要(Abstract):

为了解决电-热联合系统储能优化配置问题,首先建立热网准动态模型,基于此模型可以将热网的“虚拟储能”特性作为一种可调度资源,在储能容量规划中加以利用。然后通过两阶段鲁棒优化算法处理新能源的不确定性,针对储能0-1状态变量,采用Nested-CCG方法进行求解,获得全局最优解。考虑到热网准动态模型带来的约束量和变量数增加、算法效率低的问题,将热源温度作为中间变量,解耦电力系统和热力系统,仅针对电力系统进行鲁棒优化,大幅降低了模型复杂程度。引入条件风险价值来优化新能源出力不确定区间,以平衡经济性和鲁棒性。算例分析结果表明,所提方法在减少实体储能配置容量和降低系统运行成本方面具有优越性。
A quasi-dynamic model of heat networks is established for optimal energy storage configuration in an electric-thermal system. Based on this model,the“virtual energy storage”characteristics of heat networks can be used as a schedulable resource in energy storage capacity planning. Then,a two-stage robust optimization algorithm is used to deal with the uncertainty of renewable energy. The nested C&CG(column-and-constraint generation)algorithm is used to solve the state variable 0-1 of energy storage,and the global optimal solution is thus obtained. Considering the increase in constraints and variables brought about by the quasi-dynamic model of heat networks and the low efficiency of the algorithm,this paper takes the heat source temperature as an intermediate variable to decouple the power system and the thermal system. Then,it conducts robust optimization only for the power system,which significantly reduces the complexity of the model. This paper also introduces conditional value-at-risk(CVaR)to optimize the uncertain interval of new energy output to strike a balance between economy and robustness.An example analysis results show that the proposed method is superior in reducing physical energy storage configuration capacity and system operation cost.

关键词(KeyWords): 电-热系统;虚拟储能;两阶段鲁棒;风险;Nested-CCG
electric-thermal system;virtual energy storage;two-stage robust optimization;risk;Nested-C&CG

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211LS21N004)

作者(Author): 徐文军,吴梦凯,潘夏,邱逸,叶尚兴,郭创新
XU Wenjun,WU Mengkai,PAN Xia,QIU Yi,YE Shangxing,GUO Chuangxin

DOI: 10.19585/j.zjdl.202209006

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享