考虑条件风险价值和热网动态特性的电-热系统储能鲁棒优化配置Robust optimization configuration of energy storage in electric-thermal system considering CVaR and dynamic characteristics of heat networks
徐文军,吴梦凯,潘夏,邱逸,叶尚兴,郭创新
XU Wenjun,WU Mengkai,PAN Xia,QIU Yi,YE Shangxing,GUO Chuangxin
摘要(Abstract):
为了解决电-热联合系统储能优化配置问题,首先建立热网准动态模型,基于此模型可以将热网的“虚拟储能”特性作为一种可调度资源,在储能容量规划中加以利用。然后通过两阶段鲁棒优化算法处理新能源的不确定性,针对储能0-1状态变量,采用Nested-CCG方法进行求解,获得全局最优解。考虑到热网准动态模型带来的约束量和变量数增加、算法效率低的问题,将热源温度作为中间变量,解耦电力系统和热力系统,仅针对电力系统进行鲁棒优化,大幅降低了模型复杂程度。引入条件风险价值来优化新能源出力不确定区间,以平衡经济性和鲁棒性。算例分析结果表明,所提方法在减少实体储能配置容量和降低系统运行成本方面具有优越性。
A quasi-dynamic model of heat networks is established for optimal energy storage configuration in an electric-thermal system. Based on this model,the“virtual energy storage”characteristics of heat networks can be used as a schedulable resource in energy storage capacity planning. Then,a two-stage robust optimization algorithm is used to deal with the uncertainty of renewable energy. The nested C&CG(column-and-constraint generation)algorithm is used to solve the state variable 0-1 of energy storage,and the global optimal solution is thus obtained. Considering the increase in constraints and variables brought about by the quasi-dynamic model of heat networks and the low efficiency of the algorithm,this paper takes the heat source temperature as an intermediate variable to decouple the power system and the thermal system. Then,it conducts robust optimization only for the power system,which significantly reduces the complexity of the model. This paper also introduces conditional value-at-risk(CVaR)to optimize the uncertain interval of new energy output to strike a balance between economy and robustness.An example analysis results show that the proposed method is superior in reducing physical energy storage configuration capacity and system operation cost.
关键词(KeyWords):
电-热系统;虚拟储能;两阶段鲁棒;风险;Nested-CCG
electric-thermal system;virtual energy storage;two-stage robust optimization;risk;Nested-C&CG
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211LS21N004)
作者(Author):
徐文军,吴梦凯,潘夏,邱逸,叶尚兴,郭创新
XU Wenjun,WU Mengkai,PAN Xia,QIU Yi,YE Shangxing,GUO Chuangxin
DOI: 10.19585/j.zjdl.202209006
参考文献(References):
- [1]薛小代,梅生伟,林其友,等.面向能源互联网的非补燃压缩空气储能及应用前景初探[J].电网技术,2016,40(1):164-171.
- [2]鲁明芳,李咸善,李飞,等.基于双层博弈优化的光伏电站集群储能租赁配置策略[J/OL].中国电机工程学报.(2021-12-31)[2022-07-12]. https://kns. cnki. net/kcms/detail/detail. aspx? dbcode=CAPJ&dbname=CAPJLAST&filename=ZGDC20211230001&uniplatform=NZKPT&v=3UDY-INjhgpWTLJNKKSqtgOPRmkndXoA8lgUINuA_toTa3plJLAl2M31FSrMJogF.
- [3]刘静琨,张宁,康重庆.电力系统云储能研究框架与基础模型[J].中国电机工程学报,2017,37(12):3361-3371.
- [4]郭亦宗,王楚通,施云辉,等.区域综合能源系统电/热云储能综合优化配置[J].电网技术,2020,44(5):1611-1623.
- [5]帅轩越,王秀丽,吴雄,等.计及电热需求响应的共享储能容量配置与动态租赁模型[J].电力系统自动化,2021,45(19):24-32.
- [6]华珊.用于提高风电集群外送的电池储能系统优化配置研究[D].吉林:东北电力大学,2020.
- [7]方绍凤,周任军,许福鹿,等.考虑电热多种负荷综合需求响应的园区微网综合能源系统优化运行[J].电力系统及其自动化学报,2020,32(1):50-57.
- [8]吴勇,吕林,许立雄,等.考虑电/热/气耦合需求响应的多能微网多种储能容量综合优化配置[J].电力系统保护与控制,2020,48(16):1-10.
- [9]王明军,穆云飞,孟宪君,等.考虑热能输运动态特性的电-热综合能源系统优化调度方法[J].电网技术,2020,44(1):132-142.
- [10]吕海鹏,希望·阿不都瓦依提,孟令鹏.计及源-荷预测不确定性的微电网双级随机优化调度[J/OL].电力自动化设备.(2022-03-16)[2022-07-12]. https://kns. cnki. net/kcms/detail/detail. aspx? dbcode=CAPJ&dbname=CAPJLAST&filename=DLZS20220314003&uniplatform=NZKPT&v=ocgPdO8pp1XQzanoP9XSkh1i2Yimum3A3NNCbXi7ohh30jnqkJFkGQNRyUBEWGft.
- [11]施云辉.考虑可再生能源不确定性的电力系统多阶段鲁棒调度方法[D].杭州:浙江大学,2021.
- [12] LI X,WANG W,WANG H.A novel bi-level robust game model to optimize a regionally integrated energy system with large-scale centralized renewable-energy sources in western China[J].Energy,2021,228:120513.
- [13] XIA Y,XU Q,ZHAO J,et al.Two-stage robust optimisation of user-side cloud energy storage configuration considering load fluctuation and energy storage loss[J].IET Generation,Transmission&Distribution,2020,14(16):3278-3287.
- [14]孙鹏,滕云,回茜,等.考虑热惯性不确定性的多能源系统两阶段鲁棒优化调度模型[J].中国电机工程学报,2021,41(21):7249-7261.
- [15]李守强,刘宗歧,王静,等.计及热网损耗的乡镇生物质能综合能源系统两阶段优化运行[J].电力自动化设备,2021,41(4):24-32.
- [16]陈哲.含高比例风电的电力系统备用优化与分布式调度研究[D].杭州:浙江大学,2021.
- [17]陈哲,张伊宁,马光,等.计及需求侧响应日前-日内两阶段鲁棒备用优化[J].电力系统自动化,2019,43(24):67-76.
- [18]施云辉,王橹裕,陈玮,等.基于风电预测误差聚类的分布鲁棒含储能机组组合[J].电力系统自动化,2019,43(22):3-12.
- [19]魏震波,黄宇涵,高红均,等.含电转气和热电解耦热电联产机组的区域能源互联网联合经济调度[J].电网技术,2018,42(11):3512-3520.
- [20]张笑演,熊厚博,王楚通,等.基于最优出力区间和碳交易的园区综合能源系统灵活经济调度[J/OL].电力系统自动化.(2022-03-24)[2022-07-12]. https://kns. cnki. net/kcms/detail/detail. aspx? dbcode=CAPJ&dbname=CAPJLAST&filename=DLXT20220307000&uniplatform=NZKPT&v=JjENo4CVsXCficn8vcybKKs8UhwBoBoYpGod_G7YSgHXEhgRF9WBxy1L_dtEFRA0.
- [21]傅金洲,何国鑫,杜炜,等.计及循环寿命的电网调频储能容量优化配置[J].电力需求侧管理,2020,22(6):57-62.
- 电-热系统
- 虚拟储能
- 两阶段鲁棒
- 风险
- Nested-CCG
electric-thermal system - virtual energy storage
- two-stage robust optimization
- risk
- Nested-C&CG