浙江电力

2019, v.38;No.284(12) 1-7

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

考虑气象因子的区域电网梅雨期负荷预测
Load Forecasting of Regional Power Grid during the Plum Rains Considering Meteorological Factors

苏宜靖,谷炜,赵依,董立,蒋琛,于竞哲
SU Yijing,GU Wei,ZHAO Yi,DONG Li,JIANG Chen,YU Jingzhe

摘要(Abstract):

综合考虑气象因子对梅雨期负荷进行精确预测,能够为区域电网发电控制、调度安全和经济运行提供日前决策建议。分别构建了基于BP及Elman神经网络的短期负荷模型,引入基础和综合气象因子进行对比研究,发现梅雨期负荷与温度的相关性最强。依据历史气象及负荷数据,训练负荷预测模型,并考虑年度负荷增长趋势对负荷预测结果进行适当修正。结果表明,Elman神经网络在考虑基础或综合气象因子的情况下,对梅雨期日负荷及电量均具有良好的预测特性。
Accurate load forecasting in plum rains considering meteorological factors can provide day-ahead decision-making suggestions for power generation control, dispatching safety and economic operation of regional power grid. Two load forecasting models based on BP and Elman neural network are constructed. The basic and comprehensive meteorological factors are introduced to make a comparative study. It is found that the correlation between temperature and load is the strongest during plum rains. According to the historical meteorological and load data, the load forecasting model is trained, and the load forecasting results are corrected appropriately considering the annual load growth trend. The results show that Elman neural network method has good forecasting characteristics for daily load and electricity quantity in plum rains in consideration of basic or comprehensive meteorological factors.

关键词(KeyWords): 气象因子;负荷预测;BP神经网络;Elman神经网络;相关性;误差分析
meteorological factors;load forecasting;BP neural network;Elman neural network;relativity;error analysis

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 苏宜靖,谷炜,赵依,董立,蒋琛,于竞哲
SU Yijing,GU Wei,ZHAO Yi,DONG Li,JIANG Chen,YU Jingzhe

DOI: 10.19585/j.zjdl.201912001

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享