基于负荷场景多层聚类的储能精细化规划研究Research on refined energy storage planning based on multi-layer clustering of load scenarios
郑圣,谭书平,张清周,朱海立,赵碚,金尉,方逸航
ZHENG Sheng,TAN Shuping,ZHANG Qingzhou,ZHU Haili,ZHAO Bei,JIN Wei,FANG Yihang
摘要(Abstract):
为解决目前储能规划中场景划分不够精确及模型适用范围有限的问题,提出了基于负荷场景多层聚类的储能精细化规划方法。首先,提出了基于关联分析与聚类的负荷时空耦合特性分析方法及考虑负荷时空特性的负荷场景多层聚类方法。其次,面向典型负荷场景,构建了综合考虑碳排放、全周期成本、弃风弃光惩罚及储能和分布式电源协同的储能精细化规划模型。最后,选取某地实际配电网开展算例分析,得到了不同负荷场景下储能与分布式电源的最优协同配置方案,验证了所提模型与方法的可行性与有效性。
To address the current issues of insufficient precision in scenario division and limited applicability of models in energy storage planning, the paper proposes a method for refined energy storage planning based on multilayer clustering of load scenarios. Firstly, an analysis method is introduced that considers the spatiotemporal coupling characteristics of load using association analysis and clustering, along with a multi-layer clustering method considering load spatiotemporal characteristics. Secondly, for typical load scenarios, a refined energy storage planning model is constructed that comprehensively considers carbon emissions, lifecycle costs, penalties for curtailed wind and solar power, and the coordination of energy storage and distributed energy sources. Finally, a case study is conducted on an actual distribution network, resulting in optimal coordinated configurations of energy storage and distributed energy sources for different load scenarios. This validates the feasibility and effectiveness of the proposed model and method.
关键词(KeyWords):
储能;时空特性;负荷场景;多层聚类;协同规划
energy storage;spatiotemporal characteristic;load scenario;multi-layer clustering;collaborative planning
基金项目(Foundation): 国家重点研发计划资助项目(2020YFB2104500)
作者(Author):
郑圣,谭书平,张清周,朱海立,赵碚,金尉,方逸航
ZHENG Sheng,TAN Shuping,ZHANG Qingzhou,ZHU Haili,ZHAO Bei,JIN Wei,FANG Yihang
DOI: 10.19585/j.zjdl.202402009
参考文献(References):
- [1]张智刚,康重庆.碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报,2022,42(8):2806-2819.ZHANG Zhigang,KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE,2022,42(8):2806-2819.
- [2]李相俊,赵珊珊,惠东.面向新型电力系统的大型储能电站关键技术发展趋势分析与展望[J].供用电,2022,39(7):2-8.LI Xiangjun,ZHAO Shanshan,HUI Dong. Development trend analysis and prospect of key technologies of large energy storage station in new type power system[J].Distribution&Utilization,2022,39(7):2-8.
- [3]龚一平,王晨晖,修晓青,等.大规模储能技术及多功能应用研究综述[J].供用电,2023,40(2):68-77.GONG Yiping,WANG Chenhui,XIU Xiaoqing,et al.Overview of large-scale energy storage technology and multi-function application[J]. Distribution&Utilization,2023,40(2):68-77.
- [4]赵冬梅,徐辰宇,陶然,等.多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J].中国电机工程学报,2023,43(5):1776-1799.ZHAO Dongmei,XU Chenyu,TAO Ran,et al.Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J].Proceedings of the CSEE,2023,43(5):1776-1799.
- [5]李姚旺,张宁,张世旭,等.面向电力系统的多能源云储能模式:基本概念与研究展望[J].中国电机工程学报,2023,43(6):2179-2190.LI Yaowang,ZHANG Ning,ZHANG Shixu,et al.Multienergy cloud energy storage for power systems:basic concepts and research prospects[J]. Proceedings of the CSEE,2023,43(6):2179-2190.
- [6]陈逸文,赵晋斌,李军舟,等.电力低碳转型背景下氢储能的挑战与展望[J].发电技术,2023,43(3):296-304.CHEN Yiwen,ZHAO Jinbin,LI Junzhou,et al. Challenges and Prospects of Hydrogen Energy Storage Under the Background of Low-carbon Transformation of Power Industry[J].Power Generation Technology,2023,43(3):296-304.
- [7]郝艺博,杜锡力,李笑竹,等.考虑储能性能差异的新能源场站群共享储能交易模式[J].发电技术,2022,43(5):687-697.HAO Yibo,DU Xili,LI Xiaozhu,et al.Shared energy storage trading mode of new energy station group considering energy storage performance difference[J].Power Generation Technology,2022,43(5):687-697.
- [8]赵峰,张帆,陈小强,等.基于VMD-APSO的风电场混合储能系统容量优化配置[J].高压电器,2023,59(6):120-127.ZHAO Feng,ZHANG Fan,CHEN Xiaoqiang,et al. Optimal Configuration of Capacity of Wind Farm Hybrid Energy Storage System Based on VMD-APSO Algorithm[J]. High Voltage Apparatus,2023,59(6):120-127.
- [9]裴春兴,王蓝,王聪聪,等.电力系统储能应用场景研究综述[J].电气应用,2022,41(9):1-8.PEI Chunxing,WANG Lan,WANG Congcong,et al.Survey of application scenarios of energy storage in power system[J].Electrotechnical Application,2022,41(9):1-8.
- [10]易锦桂,朱自伟,谢青.基于改进场景聚类算法的海上风电储能优化配置研究[J].中国电力,2022,55(12):2-10.YI Jingui,ZHU Ziwei,XIE Qing.Research on optimal configuration of offshore wind power energy storage based on improved scene clustering algorithm[J]. Electric Power,2022,55(12):2-10.
- [11]杜锡力,李笑竹,陈来军,等.面向多场景调节需求的集中式共享储能鲁棒优化配置[J].电工技术学报,2022,37(23):5911-5921.DU Xili,LI Xiaozhu,CHEN Laijun,et al.Robust and optimized configuration of centralized shared energy storage for multi-scenario regulation demand[J]. Transactions of China Electrotechnical Society,2022,37(23):5911-5921.
- [12]DU R,ZOU P H,MA C.Multi-objective optimal sizing of hybrid energy storage systems for grid-connected wind farms using fuzzy control[J]. Journal of Renewable and Sustainable Energy,2021,13(1):014103.
- [13]AKRAM U,MITHULANANTHAN N,RAZA M Q,et al.RoCoF restrictive planning framework and wind speed forecast informed operation strategy of energy storage system[J].IEEE Transactions on Power Systems,2021,36(1):224-234.
- [14]李笑彤,宋宝同,吕风波,等.基于负荷数据聚类的充电站储能容量规划方法[J].电网与清洁能源,2021,37(1):90-96.LI Xiaotong,SONG Baotong,LüFengbo,et al. An energy storage capacity planning method of charging station based on load data clustering[J].Power System and Clean Energy,2021,37(1):90-96.
- [15]张志遥,黄婧杰,周年光,等.储能参与低碳灵活调峰的双层优化模型[J/OL].南方电网技术:1-10[2023-02-27].http://kns. cnki. net/kcms/detail/44.1643. tk. 20230130.1318.006.html.ZHANG Zhiyao,HUA Jingjie,ZHOU Nianguang,et al.Bi-level optimization model of energy storage participating in low-carbon and flexible peak shaving[J/OL].Southern Power System Technology:1-10[2023-02-27]. http://kns.cnki.net/kcms/detail/44.1643.tk.20230130.1318.006.html.
- [16]赵璐,巩晋通,李园林,等.考虑碳效益和辅助调峰的光伏电站储能配置方法[J].武汉大学学报(工学版),2023,56(1):80-88.ZHAO Lu,GONG Jintong,LI Yuanlin,et al.Energy storage configuration method of photovoltaic power station considering carbon benefits and auxiliary peak shaving[J].Engineering Journal of Wuhan University,2023,56(1):80-88.
- [17]卢洵,张东辉,周姝灿,等.复杂交直流电网系统级新型储能协调规划布局方法[J/OL].南方电网技术:1-11[2023-02-27]. http://kns. cnki. net/kcms/detail/44.1643. tk.20230202.1705.007.html.LU Xun,ZHANG Donghui,ZHOU Shucan,et al.Coordinated planning layout method for system-level new energy storage of complex AC/DC power drids[J/OL].Southern Power System Technology:1-11[2023-02-27]. http://kns.cnki.net/kcms/detail/44.1643.tk.20230202.1705.007.html.
- [18]侯美倩,牛启帆,邢洁,等.计及可靠性的含源配电网储能系统的优化配置[J].储能科学与技术,2023,12(2):504-514.HOU Meiqian,NIU Qifan,XING Jie,et al.Optimal configuration of energy storage system in active distribution network with the consideration of reliability[J]. Energy Storage Science and Technology,2023,12(2):504-514.
- [19]吴晓刚,吴新华,季青锋,等.计及新能源不确定性的新能源场站与储能电站分布式协同优化[J].浙江电力,2022,41(6):54-61.WU Xiaogang,WU Xinhua,JI Qingfeng,et al.Distributed collaborative optimization of new energy stations and energy storage power stations taking account of the uncertainty of new energy[J].Zhejiang Electric Power,2022,41(6):54-61.
- [20]刘新萌,时荣超,吕风波,等.面向多站融合的储能容量优化配置模型及方法[J].供用电,2022,39(4):93-99.LIU Xinmeng,SHI Rongchao,LüFengbo,et al. Model and method of optimal allocation of energy storage capacity for multi-station integration[J].Distribution&Utilization,2022,39(4):93-99.
- [21]熊宇峰,司杨,郑天文,等.基于主从博弈的工业园区综合能源系统氢储能优化配置[J].电工技术学报,2021,36(3):507-516.XIONG Yufeng,SI Yang,ZHENG Tianwen,et al.Optimal configuration of hydrogen storage in industrial park integrated energy system based on stackelberg game[J].Transactions of China Electrotechnical Society,2021,36(3):507-516.
- [22]吴杰,丁明,张晶晶.基于云模型和k-means聚类的风电场储能容量优化配置方法[J].电力系统自动化,2018,42(24):67-73.WU Jie,DING Ming,ZHANG Jingjing.Capacity configuration method of energy storage system for wind farm based on cloud model and k-means clustering[J].Automation of Electric Power Systems,2018,42(24):67-73.
- [23]BEN ELGHALI S,OUTBIB R,BENBOUZID M. Selecting and optimal sizing of hybridized energy storage systems for tidal energy integration into power grid[J].Journal of Modern Power Systems and Clean Energy,2019,7(1):113-122.
- [24]张森豪.考虑时空分布特性的可控负荷聚类分析及优化调度策略研究[D].南京:南京邮电大学,2022.ZHANG Senhao.Cluster analysis of controllable load and optimal scheduling strategy considering space-time distribution characteristics[D].Nanjing:Nanjing University of Posts and Telecommunications,2022.
- [25]张春艳,倪世宏,张鹏,等.基于多层聚类的多分类SVM快速学习方法[J].计算机工程与设计,2017,38(2):522-527.ZHANG Chunyan,NI Shihong,ZHANG Peng,et al.Multi-classification SVM multi-clustering fast learning method[J]. Computer Engineering and Design,2017,38(2):522-527.
- [26]陈菲,张美霞.基于多层聚类的需求侧用户负荷形态分析方法[J].水电能源科学,2018,36(3):215-218.CHEN Fei,ZHANG Meixia. Electrical load analysis method based on multi-stage clustering[J]. Water Resources and Power,2018,36(3):215-218.
- [27]朱文俊,王毅,罗敏,等.面向海量用户用电特性感知的分布式聚类算法[J].电力系统自动化,2016,40(12):21-27.ZHU Wenjun,WANG Yi,LUO Min,et al. Distributed clustering algorithm for awareness of electricity consumption characteristics of massive consumers[J].Automation of Electric Power Systems,2016,40(12):21-27.
- [28]宋易阳,李存斌,祁之强.基于云模型和模糊聚类的电力负荷模式提取方法[J].电网技术,2014,38(12):3378-3383.SONG Yiyang,LI Cunbin,QI Zhiqiang. Extraction of power load patterns based on cloud model and fuzzy clustering[J].Power System Technology,2014,38(12):3378-3383.
- [29]谭艳秋.电力系统应用中电池储能系统的生命周期温室气体影响分析[D].南京:南京大学,2017.TAN Yanqiu.Life cycle greenhouse gas impacts of battery energy storage systems in power system applications[D].Nanjing:Nanjing University,2017.
- [30]刘阳,滕卫军,谷青发,等.规模化多元电化学储能度电成本及其经济性分析[J].储能科学与技术,2023,12(1):312-318.LIU Yang,TENG Weijun,GU Qingfa,et al.Scaled-up diversified electrochemical energy storage LCOE and its economic analysis[J].Energy Storage Science and Technology,2023,12(1):312-318.
- 储能
- 时空特性
- 负荷场景
- 多层聚类
- 协同规划
energy storage - spatiotemporal characteristic
- load scenario
- multi-layer clustering
- collaborative planning