极端天气下基于RF-LSTM的配电网馈线薄弱环节识别方法An identification method for weak links in distribution network feeders based on RF-LSTM under extreme weather
周丹阳,黄晓燕
ZHOU Danyang,HUANG Xiaoyan
摘要(Abstract):
为增强配电网对极端天气的主动防御能力,提高供电可靠性,提出了一种基于RF(随机森林)结合LSTM(长短期记忆网络)的配电网馈线薄弱环节识别方法。首先,基于历史运行数据利用LSTM对极端天气发生时的潮流进行短时预测,并将预测结果和气象预报信息等作为故障预测模型的输入参数。然后,采用RF算法构建极端天气场景下配电网的馈线故障预测模型,并对历史数据进行学习和训练。最后,将LSTM预测得到的短期潮流数据、气象参数和网架信息输入到RF预测模型中并进行运算,预测配电网馈线的故障概率并划分其薄弱等级,最终实现极端天气下配电网馈线的薄弱环节识别。仿真实验结果表明,该方法能够准确识别配电网馈线的薄弱环节,对提升配电网的主动运维能力具有实用参考价值。
An identification method for weak links in distribution network feeders based on RF(random forest) and LSTM(long and short-term memory network) is proposed to enhance the active defense of the distribution networks against extreme weather and improve power supply reliability. First, the short-time prediction of power flow under extreme weather is carried out based on historical operation data using LSTM, and the prediction results and weather forecast information are used as input parameters of the fault prediction model. Afterward, the feeder fault prediction model of the distribution networks under extreme weather is constructed using the RF algorithm, and the historical data are learned and trained. Finally, the short-term power flow data, meteorological parameters, and grid frame data obtained from the LSTM prediction are input into the RF prediction model and calculated. The fault probability of the distribution network feeders is predicted, and their weakness is classified to identify the weak links in the distribution grid feeders under extreme weather. The simulation results show that the method can accurately determine the weak links in distribution network feeders and can serve as a practical reference for improving distribution networks′ active operation and maintenance capability.
关键词(KeyWords):
配电网;极端天气;RF-LSTM算法;故障预测;薄弱环节识别
distribution network;extreme weather;RF-LSTM algorithm;fault prediction;weak links identification
基金项目(Foundation):
作者(Author):
周丹阳,黄晓燕
ZHOU Danyang,HUANG Xiaoyan
DOI: 10.19585/j.zjdl.202212009
参考文献(References):
- [1]周象贤,刘黎,王少华,等.浙江电网自然灾害特征、趋势与预测技术概况[J].浙江电力,2021,40(5):20-29.
- [2]赵波,王财胜,周金辉,等.主动配电网现状与未来发展[J].电力系统自动化,2014,38(18):125-135.
- [3]黄道姗.电网薄弱环节分类识别技术研究[J].电力工程技术,2017,36(4):91-97.
- [4]蒲天骄,乔骥,韩笑,等.人工智能技术在电力设备运维检修中的研究及应用[J].高电压技术,2020,46(2):369-383.
- [5]唐燕,刘艳.考虑电网总风险和检修收益的设备状态检修计划优化[J].电力系统保护与控制,2014,42(9):33-39.
- [6]徐特威,鲁宗相,乔颖,等.基于典型故障与环境场景关联识别的城市配电网运行风险预警方法[J].电网技术,2017,41(8):2577-2584.
- [7]张稳,盛万兴,刘科研,等.计及天气因素相关性的配电网故障风险等级预测方法[J].电网技术,2018,42(8):2391-2398.
- [8]吴琛,苏明昕,谢云云,等.基于BP神经网络的输电线路雷击故障预测[J].电力工程技术,2020,39(5):133-139.
- [9]王玮,赵家悦,郭创新,等.考虑故障连锁的多灾害输电网弹性评估及关键弹性提升元件辨识[J].中国电机工程学报,2022,42(1):127-139.
- [10]吴勇军,薛禹胜,谢云云,等.台风及暴雨对电网故障率的时空影响[J].电力系统自动化,2016,40(2):20-29.
- [11]周小华,范美鹏,袁雪松,等.融合气象信息的配网故障特征挖掘和故障预报研究[J].电力大数据,2020,23(12):72-79.
- [12]赵腾,张焰,张东霞.智能配电网大数据应用技术与前景分析[J].电网技术,2014,38(12):3305-3312.
- [13]费思源.大数据技术在配电网中的应用综述[J].中国电机工程学报,2018,38(1):85-96.
- [14]闫冬,彭国政,高海龙,等.基于深度强化学习组合优化的配电网拓扑控制研究[J].电网技术,2022,46(7):2547-2554.
- [15]苗新,张东霞,孙德栋.配电网中应用大数据的机遇与挑战[J],电网技术,2015,39(11):3122-3127.
- [16]吕红燕,冯倩.随机森林算法研究综述[J].河北省科学院学报,2019,36(3):37-41.
- [17]赵腾,王林童,张焰,等.采用互信息与随机森林算法的用户用电关联因素辨识及用电量预测方法[J].中国电机工程学报,2016,36(3):604-614.
- [18]朱乔木,李弘毅,王子琪,等.基于长短期记忆网络的风电场发电功率超短期预测[J].电网技术,2017,41(12):3797-3802.
- [19]王奕森,夏树涛.集成学习之随机森林算法综述[J].信息通信技术,2018,12(1):49-55.
- [20]周晓敏,葛少云,李腾,等.极端天气条件下的配电网韧性分析方法及提升措施研究[J].中国电机工程学报,2018,38(2):505-513.
- [21]邓红雷,戴栋,李述文.基于层次分析-熵权组合法的架空输电线路综合运行风险评估[J].电力系统保护与控制,2017,45(1):28-34.
- [22]何健伟,曹渝昆.LSTM-RF的中长期风电功率组合预测方法[J].上海电力大学学报,2020,36(4):341-350.