基于H∞无迹卡尔曼滤波的退役锂离子电池SOC估计SOC Estimation of Decommissioned Lithium-Ion Batteries Based on H∞ Unscented Kalman Filter
谢宝江,娄伟明,罗扬帆,王华昕,李珂
XIE Baojiang,LOU Weiming,LUO Yangfan,WANG Huaxin,LI Ke
摘要(Abstract):
电动汽车的锂离子动力电池退役后,具备在储能系统等场合继续使用的潜力,其SOC(电池荷电状态)的准确估计对于退役电池的梯次利用具有重要意义。针对传统UKF(无迹卡尔曼滤波)算法出现模型参数不确定及采样噪声干扰导致估算精度下降甚至系统发散等问题,提出一种HUKF(H_∞无迹卡尔曼滤波)算法。该算法在UKF基础上,利用H_∞控制理论引入调整因子来修正UKF中计算协方差时遇到的病态矩阵,提高对异常值和非高斯噪声的鲁棒性。实验结果表明,改进算法以较快的收敛速度实现了更精确的SOC估计,且鲁棒性较好,满足了退役电池SOC估计的实际需求。
After being decommissioned, lithium-ion batteries of the electric vehicles can further be used in energy storage systems, and the accurate SOC(state of charge) estimation is of significance to their second use. Given the estimation accuracy decrease or even system divergence due to model parameter uncertainty and the sample noise interference in the conventional UKF(unscented Kalman filter) algorithm, the paper proposes a HUKF(H_∞unscented Kalman filter) algorithm, which introduces the adjustment factor to correct the ill-conditioned matrix in covariance calculation in UKF through H_∞control theory to improve the robustness to outliers and non-Gaussian noise. The experimental results show that the improved algorithm achieves more accurate SOC estimation with higher convergence speed and better robustness, which satisfies the actual demand of SOC estimation of decommissioned batteries.
关键词(KeyWords):
退役电池;荷电状态;H_∞控制;调整因子;无迹卡尔曼滤波
decommissioned battery;SOC;H_∞ control;adjustment factor;unscented Kalman filter
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ1800KJ)
作者(Author):
谢宝江,娄伟明,罗扬帆,王华昕,李珂
XIE Baojiang,LOU Weiming,LUO Yangfan,WANG Huaxin,LI Ke
DOI: 10.19585/j.zjdl.202008009
参考文献(References):
- [1]蔡铭,陈维杰,许俊斌,等.退役LiFePO4电池梯次利用分选方法[J].电源技术,2019,43(5):781-784.
- [2]刘新天,李涵琪,魏增福,等.基于Drift-Ah积分法的CKF估算锂电池SOC[J].控制与决策,2019,34(3):535-541.
- [3]何耀,曹成荣,刘新天,等.基于可变温度模型的锂电池SOC估计方法[J].电机与控制学报,2018,22(1):43-52.
- [4]程泽,杨磊,孙幸勉.基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J].中国电机工程学报,2018,38(8):2384-2393.
- [5]费亚龙,谢长君,汤泽波,等.基于平方根无迹卡尔曼滤波的锂电池状态估计[J].中国电机工程学报,2017,37(15):244-250.
- [6]刘坚.电动汽车退役电池储能应用潜力及成本分析[J].储能科学与技术,2017,6(2):243-249.
- [7]张金龙,佟微,漆汉宏,等.平方根采样点卡尔曼滤波在磷酸铁锂电池组荷电状态估算中的应用[J].中国电机工程学报,2016,36(22):6246-6253.
- [8]刘毅,谭国俊,何晓群.优化电池模型的自适应Sigma卡尔曼荷电状态估算[J].电工技术学报,2017,32(2):108-118.
- [9]许守平,侯朝勇,胡娟,等.利用信息融合技术的储能锂离子电池组SOC估算[J].电网技术,2016,40(6):1724-1729.
- [10]刘新天,李贺,何耀,等.基于IUPF算法与可变参数电池模型的SOC估计方法[J].东南大学学报(自然科学版),2018,48(1):54-62.
- [11]张金龙,佟微,漆汉宏,等.平方根采样点卡尔曼滤波在磷酸铁锂电池组荷电状态估算中的应用[J].中国电机工程学报,2016,36(22):6246-6253.
- [12]谢长君,费亚龙,曾春年,等.基于无迹粒子滤波的车载锂离子电池状态估计[J].电工技术学报,2018,33(17):3958-3964.
- [13]许伦辉,王祥雪.基于SVD的抗差UKF算法在短时交通流状态估计中的应用[J].华南理工大学学报(自然科学版),2016,44(12):44-52.
- [14]邱亚,李鑫,陈薇,等.基于RLS和EKF算法的全钒液流电池SOC估计[J].控制与决策,2018,33(1):37-44.
- [15]AKHLAGHI S,ZHOU N,HUANG Z.A multi-step adaptive interpolation approach to mitigating the impact of nonlinearity on dynamic state estimation[J].IEEE Transactions on Smart Grid,2016:1.
- [16]周克敏.鲁棒与最优控制[M].北京:国防工业出版社,2002.
- [17]DAN S.Optimal state estimation:Kalman,H∞,and nonlinear approaches[C]//Optimal State Estimation:Kalman,H Infinity,and Nonlinear Approaches.New York:John WILEY&Sans,Inc.,2006.
- [18]齐军,王小海,侯佑华,等.适用于蒙西电网的大规模储能技术分析[J].内蒙古电力技术,2019,37(4):1-6.
- [19]任军,王凯,任宝森.基于改进模型和无迹卡尔曼滤波的锂离子电池荷电状态估计[J].电器与能效管理技术,2019(4):64-70.
- [20]黄际元,杨俊,李欣然,等.面向电网的电池储能系统直流侧统一等效模型[J].电器与能效管理技术,2019(2):60-66.
- [21]吴良恕,张劲松,王亮.磷酸铁锂电池组多层混合主动均衡电路设计[J].浙江水利水电学院学报,2019,31(5):60-66.