浙江电力

2020, v.39;No.292(08) 53-60

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于H无迹卡尔曼滤波的退役锂离子电池SOC估计
SOC Estimation of Decommissioned Lithium-Ion Batteries Based on H Unscented Kalman Filter

谢宝江,娄伟明,罗扬帆,王华昕,李珂
XIE Baojiang,LOU Weiming,LUO Yangfan,WANG Huaxin,LI Ke

摘要(Abstract):

电动汽车的锂离子动力电池退役后,具备在储能系统等场合继续使用的潜力,其SOC(电池荷电状态)的准确估计对于退役电池的梯次利用具有重要意义。针对传统UKF(无迹卡尔曼滤波)算法出现模型参数不确定及采样噪声干扰导致估算精度下降甚至系统发散等问题,提出一种HUKF(H_∞无迹卡尔曼滤波)算法。该算法在UKF基础上,利用H_∞控制理论引入调整因子来修正UKF中计算协方差时遇到的病态矩阵,提高对异常值和非高斯噪声的鲁棒性。实验结果表明,改进算法以较快的收敛速度实现了更精确的SOC估计,且鲁棒性较好,满足了退役电池SOC估计的实际需求。
After being decommissioned, lithium-ion batteries of the electric vehicles can further be used in energy storage systems, and the accurate SOC(state of charge) estimation is of significance to their second use. Given the estimation accuracy decrease or even system divergence due to model parameter uncertainty and the sample noise interference in the conventional UKF(unscented Kalman filter) algorithm, the paper proposes a HUKF(H_∞unscented Kalman filter) algorithm, which introduces the adjustment factor to correct the ill-conditioned matrix in covariance calculation in UKF through H_∞control theory to improve the robustness to outliers and non-Gaussian noise. The experimental results show that the improved algorithm achieves more accurate SOC estimation with higher convergence speed and better robustness, which satisfies the actual demand of SOC estimation of decommissioned batteries.

关键词(KeyWords): 退役电池;荷电状态;H_∞控制;调整因子;无迹卡尔曼滤波
decommissioned battery;SOC;H_∞ control;adjustment factor;unscented Kalman filter

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ1800KJ)

作者(Author): 谢宝江,娄伟明,罗扬帆,王华昕,李珂
XIE Baojiang,LOU Weiming,LUO Yangfan,WANG Huaxin,LI Ke

DOI: 10.19585/j.zjdl.202008009

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享