浙江电力

2024, v.43;No.338(06) 88-100

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于数据扩充与无阈值递归图的非侵入式负荷识别方法
A non-intrusive load identification method based on data augmentation and threshold-free recurrence plot

邢海青,郭瑞峰,杨浙川,熊小雨,施永涛
XING Haiqing,GUO Ruifeng,YANG Zhechuan,XIONG Xiaoyu,SHI Yongtao

摘要(Abstract):

非侵入式负荷监测技术不仅能将电能流向透明化,还能简化智能电表安装流程,从而有效降低负荷监测成本。为提高非侵入式负荷监测中的负荷识别准确性,提出了基于数据扩充与无阈值递归图的非侵入式负荷识别方法。采用去噪扩散概率模型对小样本负荷数据进行数据扩充,以提升负荷识别方法的鲁棒性;通过去除递归图的Heaviside函数实现无阈值递归图以高效表征负荷特征,并结合Transformer深度学习网络构建负荷识别框架。将所提出的方法应用到3个实测数据集中,实验结果表明,所提方法能有效提高负荷识别准确度,改善分类效果。
Non-intrusive load monitoring(NILM) not only makes the flow of electric energy transparent but also simplifies the installation process of smart meters, effectively reducing the cost of load monitoring. To enhance the accuracy of load recognition in NILM, a method for load recognition based on data augmentation and threshold-free recurrence plot(RP) is proposed. a denoising diffusion probability model(DDPM) is utilized to augment the load data of small samples to enhance the robustness of the load recognition method. Furthermore, a threshold-free RP, achieved by removing the Heaviside function of the recurrence graph, efficiently represents load characteristics.This is combined with a Transformer deep learning network to construct a load recognition framework. The proposed method is applied to three real-world datasets, and experimental results demonstrate its effectiveness in improving load recognition accuracy and enhancing classification performance.

关键词(KeyWords): 非侵入式负荷监测;数据扩充;负荷识别;深度学习;递归图
NILM;data augmentation;load identification;deep learning;RP

Abstract:

Keywords:

基金项目(Foundation): 浙江省重点研发计划(2021C01144);; 浙江大有集团有限公司科技项目(2021-DY16)

作者(Author): 邢海青,郭瑞峰,杨浙川,熊小雨,施永涛
XING Haiqing,GUO Ruifeng,YANG Zhechuan,XIONG Xiaoyu,SHI Yongtao

DOI: 10.19585/j.zjdl.202406010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享