浙江电力

2023, v.42;No.330(10) 57-64

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于多阶段注意力机制的建筑空调负荷预测方法
A load forecasting method for building air conditioning based on multi-stage attention mechanism

陈东海,马旭,王波,朱晓杰,白文博
CHEN Donghai,MA Xu,WANG Bo,ZHU Xiaojie,BAI Wenbo

摘要(Abstract):

建筑空调负荷预测对于提升建筑用电负荷和区域配电网电力负荷预测的准确性具有重要意义。为了提高建筑空调负荷预测的准确性,提出一种基于多阶段注意力机制的建筑空调负荷预测方法。首先,构建影响因素注意力模块,以充分考虑不同影响因素对于建筑空调负荷预测的重要性差异;然后,采用长短期记忆神经网络模型提取各个时刻影响因素的隐含特征;最后,构建时间注意力模块,将不同时刻的影响因素隐含特征根据建筑空调负荷预测的重要性加以区分,以求得最终的空调负荷预测结果。算例结果表明,影响因素注意力模块和时间注意力模块的构建,都有利于提高模型对建筑空调负荷的拟合能力,从而有效提升建筑空调负荷预测的准确性。
Load forecasting of building air conditioning is of great significance for improving the accuracy of power load forecasting of buildings and regional distribution networks. In order to improve the load forecasting accuracy of building air conditioning, a load forecasting method based on multi-stage attention mechanism is proposed. First, the attention module of influencing factors is constructed to fully consider the importance difference of different influencing factors for load forecasting of building air conditioning. Second, the LSTM network model is used to extract the implicit features of influencing factors in each hour. Finally, the temporal attention module is constructed to differentiate the implicit features of the influencing factors in different hours according to the importance of building air conditioning load forecasting to obtain the results of the air conditioning load forecasting. The example results show that the construction of the influencing factor attention module and the temporal attention module are both conducive to improving the model's ability to fit the building air-conditioning load, thus effectively improving the load prediction accuracy of building air-conditioning.

关键词(KeyWords): 建筑空调负荷;多阶段注意力机制;长短期记忆神经网络;负荷预测
building air conditioning load;multi-stage attention mechanism;LSTM network;load forecasting

Abstract:

Keywords:

基金项目(Foundation): 宁波永耀电力投资集团有限公司科技项目(CY820400QT20210652)

作者(Author): 陈东海,马旭,王波,朱晓杰,白文博
CHEN Donghai,MA Xu,WANG Bo,ZHU Xiaojie,BAI Wenbo

DOI: 10.19585/j.zjdl.202310007

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享