超低排放燃煤机组SO3和NH3生成及迁移规律研究Research on the Formation and Migration Characteristics of SO3 and NH3 in Ultra-low Emission Coal-fired Units
李文华,吴贤豪,陈彪,胡剑利
LI Wenhua,WU Xianhao,CHEN Biao,HU Jianli
摘要(Abstract):
研究不同机组负荷、还原剂制备方式下超低排放燃煤机组SO_3和NH_3生成及迁移规律,结果表明:负荷的升高促进SCR(选择性催化还原)系统内SO2转化为SO_3,也会促进氨逃逸上升;机组负荷的升高抑制SO_3和NH_3在空预器段迁移;3种还原剂制备方式的机组,SO_3迁移比例在空预器为1.5%~10.4%,在LLT-ESP(低低温电除尘器)为33.7%~53.9%,在FGD(脱硫塔)为17.0%~29.3%; NH_3在空预器和LLT-ESP的迁移比例分别为23%~50%和50%~67%,进入FGD量极少;还原剂制备方式短时对NH_3和SO_3生成及迁移影响不明显,长期运行可能造成氨逃逸上升,进而影响SO_3迁移。
In this paper, the formation and migration characteristics of SO_3 and NH_3 in ultra-low emission coal-fired units under different unit loads and reductant preparation methods are studied. The results show that load increase accelerates the conversion of SO2 to SO_3 in a selective catalytic reduction(SCR) system, and also increases the escaped ammonia. The increase of unit load inhibits the migration of SO_3 and NH_3 in the air preheater. The migration ratios of SO_3 in air pre-heater, LLT-ESP(low-low temperature electrostatic precipitator), and FGD(flue gas desulfurization) of different reductant preparation methods units are respectively 1.5%~10.4%, 33.7%~53.9%, and 17.0%~29.3% of the total SO_3. The migration ratios of NH_3 in air pre-heater and LLT-ESP of different reducing agent preparation methods units are 23% ~50% and 50% ~67% respectively with a small amount of NH_3 entering FGD. The preparation method of the reductant has no obvious impact on the generation and migration of NH_3 and SO_3 in a short time, but its long-term operation may cause ammonia escape increase, which in turn affects the SO_3 migration.
关键词(KeyWords):
超低排放;燃煤机组;SO_3;NH_3;生成;迁移
ultra-low emission;coal-fired units;SO_3;NH_3;formation;migration
基金项目(Foundation): 浙江省能源集团2019年科技项目(ZNKJ-2019-032)
作者(Author):
李文华,吴贤豪,陈彪,胡剑利
LI Wenhua,WU Xianhao,CHEN Biao,HU Jianli
DOI: 10.19585/j.zjdl.202108014
参考文献(References):
- [1]王妍艳,陶雷行,岳春妹,等.超低排放燃煤机组SO3脱除效果研究[J].电力与能源,2020,41(5):93-98.
- [2]袁细宁.脱硝市场现状及发展建议[J].科技资讯,2010(19):222.
- [3]胡劲逸.基于氨逃逸浓度场的SCR喷氨协调优化控制[D].杭州:浙江大学,2015.
- [4]MATSUDA S,KAMO T,KATO A,et al.Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J].Industrial&Engineering Chemistry Product Research and Development,1982,21(1):1888-1900.
- [5]朱崇兵,金保升,李锋,等.SO2氧化对SCR法烟气脱硝的影响[J].锅炉技术,2008(3):68-72.
- [6]王杭州.SCR对脱硝效率及SO2转化影响分析[J].电力科学与工程,2009,24(5):17-21.
- [7]冯前伟,张杨,王丰吉,等.燃煤机组SCR脱硝超低排放改造前后性能对比分析[J].中国电机工程学报,2020,40(20):258-267.
- [8]柴小康,黄国和,解玉磊,等.某燃煤超低排放机组非常规污染物脱除[J].环境工程学报,2020,14(12):242-256.
- [9]张杨.燃煤电厂环保装备对SO3排放的影响及控制策略研究[D].杭州:浙江大学,2020.
- [10]BURKE J M,JOHNSON K L.Ammonium sulfate and bisulfate formation in air preheaters[J].Bmj british medi cal journal,1982,329(7463):446.
- [11]杨建国,杨炜樱,郑方栋,等.NH3和SO3对硫酸氢铵和硫酸铵生成的影响[J].燃料化学学报,2018,46(1):92-98.
- [12]YU W C,WU X,SI Z,et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2catalyst[J].Applied Surface Science,2013,283:209-214.
- [13]刘亚明,束航,徐齐胜,等.SCR脱硝过程中SO2催化氧化的原位红外研究[J].燃料化学学报,2015(8):1018-1024.
- [14]JI P D,GAO X,DU X S,et al.Relationship between the molecular structure of V2O5/TiO2catalysts and the reactivity of SO2oxidation[J].Catalysis Science&Technology,2016,6(4):1187-1194.
- [15]马双忱,邓悦,吴文龙,等.SCR脱硝过程中硫酸氢铵形成特性实验研究[J].动力工程学报,2016,36(2):143-150.
- [16]谢增孝,王民军,朱继峰.尿素水解法在超超临界机组脱硝系统中的应用与优化[J].浙江电力,2020,39(3):88-93.