气象特征频繁变化区域的光伏功率预测方法A photovoltaic power prediction method for regions with frequent changes of meteorological characteristics
陈文进,陈菁伟,钱建国,唐明,林承钱,许一洲,刘皓明
CHEN Wenjin,CHEN Jingwei,QIAN Jianguo,TANG Ming,LIN Chengqian,XU Yizhou,LIU Haoming
摘要(Abstract):
准确的光伏功率预测对电网稳定运行具有重要意义,因此提出一种气象特征频繁变化区域的光伏功率预测方法,以期能提高光伏功率预测的准确性。首先,基于Person相关性分析构建光伏功率预测的多变量时间序列;然后,利用C-C法对光伏功率预测的时间序列进行MPSR(多变量相空间重构),进一步挖掘光伏功率与气象特征间的耦合关系;最后,利用SVR(支持向量回归)对光伏功率与气象特征重构后的相空间进行非线性拟合并预测。为验证MPSR能够提高预测效果,同时比较了MPSR结合BPNN(反向传播神经网络)与RBFNN(径向基函数神经网络)的预测效果。算例分析表明,MPSR能够进一步挖掘气象特征变化频繁区域中包含的特征信息,结合MPSR的预测模型提高了光伏功率的预测精度。
Accurate prediction of photovoltaic(PV) power is of great significance to the stable operation of power grid. Therefore, a PV power prediction method is proposed based on frequent changes of meteorological features to improve the prediction accuracy. Firstly, the multivariate time series of PV power prediction is constructed based on Person correlation analysis. Secondly, multivariable phase space reconstruction(MPSR) is performed for the time series of PV power prediction by C-C method to further investigate the coupling between PV power and meteorological characteristics. Finally, support vector regression(SVR) is used for non-linear fitting and predicting the phase space after PV power and meteorological feature reconstruction. To verify MPSR can improve the prediction effect, the paper compares MPSR that combines with back propagation neural network(BPNN) and radial basis function neural network(RBFNN). Example analysis shows that MPSR can further explore the feature information contained in the regions with frequent changes of meteorological features. The prediction model that combines with MPSR improves the prediction accuracy of PV power.
关键词(KeyWords):
光伏功率预测;特征挖掘;多变量相空间重构;支持向量回归
photovoltaic power prediction;characteristics mining;multivariable phase space reconstruction;support vector regression
基金项目(Foundation): 浙江省电力有限公司科技项目(5211UZ2000K4)
作者(Author):
陈文进,陈菁伟,钱建国,唐明,林承钱,许一洲,刘皓明
CHEN Wenjin,CHEN Jingwei,QIAN Jianguo,TANG Ming,LIN Chengqian,XU Yizhou,LIU Haoming
DOI: 10.19585/j.zjdl.202303005
参考文献(References):
- [1]朱琼锋,李家腾,乔骥,等.人工智能技术在新能源功率预测的应用及展望[J/OL].中国电机工程学报:1-23[2023-03-27]. https://kns. cnki. net/KCMS/detail/detail. aspx?filename=ZGDC20220424003&dbname=CJFD&dbcode=CJFQ.DOI:10.13334/j.0258-8013.pcsee.213114.ZHU Qiongfeng,LI Jiateng,QIAO Ji,et al. Application and prospect of AI technology in renewable energy forecasting[J/OL].Proceedings of the CSEE:1-23.[2023-03-17].https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDC20220424003&dbname=CJFD&dbcode=CJFQ.DOI:10.13334/j.0258-8013.pcsee.213114.
- [2]舒印彪.发展新型电力系统助力实现“双碳”目标[J].中国电力企业管理,2021(7):8-9.SHU Yinbiao.Developing new power system to help realize the goal of “double carbon”[J]. China Power Enterprise Management,2021(7):8-9.
- [3]辛保安.加快建设新型电力系统助力实现“双碳”目标[J].国家电网,2021(8):10-12.XIN Baoan. Speeding up the construction of new power system to help realize the goal of “double carbon”[J].State Grid,2021(8):10-12.
- [4]舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-9.SHU Yinbiao,ZHANG Zhigang,GUO Jianbo,et al.Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE,2017,37(1):1-9.
- [5]韩肖清,李廷钧,张东霞,等.双碳目标下的新型电力系统规划新问题及关键技术[J].高电压技术,2021,47(9):3036-3046.HAN Xiaoqing,LI Tingjun,ZHANG Dongxia,et al.New issues and key technologies of new power system planning under double carbon goals[J].High Voltage Engineering,2021,47(9):3036-3046.
- [6]赖昌伟,黎静华,陈博,等.光伏发电出力预测技术研究综述[J].电工技术学报,2019,34(6):1201-1217.LAI Changwei,LI Jinghua,CHEN Bo,et al. Review of photovoltaic power output prediction technology[J].Transactions of China Electrotechnical Society,2019,34(6):1201-1217.
- [7] WANG M,PENG J Q,LUO Y M,et al.Comparison of different simplistic prediction models for forecasting PV power output:Assessment with experimental measurements[J].Energy,2021,224(1):120162.
- [8]赵书强,王明雨,胡永强,等.基于不确定理论的光伏出力预测研究[J].电工技术学报,2015,30(16):213-220.ZHAO Shuqiang,WANG Mingyu,HU Yongqiang,et al.Research on the prediction of PV output based on uncertainty theory[J]. Transactions of China Electrotechnical Society,2015,30(16):213-220.
- [9] MA T,YANG H X,LU L. Solar photovoltaic system modeling and performance prediction[J]. Renewable and Sustainable Energy Reviews,2014,36:304-315.
- [10] LI Y T,SU Y,SHU L J.An ARMAX model for forecasting the power output of a grid connected photovoltaic system[J].Renewable Energy,2014,66(6):78-89.
- [11]张扬科,李刚,李秀峰.基于典型代表电站和改进SVM的区域光伏功率短期预测方法[J].电力自动化设备,2021,41(11):205-210.ZHANG Yangke,LI Gang,LI Xiufeng. Short-term forecasting method for regional photovoltaic power based on typical representative power stations and improved SVM[J]. Electric Power Automation Equipment,2021,41(11):205-210.
- [12]陈文进,朱峰,张童彦,等.基于AFSA-BP神经网络的光伏功率预测方法[J].浙江电力,2022,41(4):7-13.CHEN Wenjin,ZHU Feng,ZHANG Tongyan,et al. A photovoltaic power prediction method based on AFSA-BP neural network[J].Zhejiang Electric Power,2022,41(4):7-13.
- [13]孟安波,许炫淙,陈嘉铭,等.基于强化学习和组合式深度学习模型的超短期光伏功率预测[J].电网技术,2021,45(12):4721-4728.MENG Anbo,XU Xuancong,CHEN Jiaming,et al.Ultra short term photovoltaic power prediction based on reinforcement learning and combined deep learning model[J].Power System Technology,2021,45(12):4721-4728.
- [14]许达.基于相似日选择联合PSO-RBF的光伏出力预测方法[J].电子测量技术,2020,43(23):78-83.XU Da. Photovoltaic output prediction method based on similar day selection combined with PSO-RBF[J]. Electronic Measurement Technology,2020,43(23):78-83.
- [15] HU W,ZHANG X Y,ZHU L J,et al.Short-term photovoltaic power prediction based on similar days and improved SOA-DBN model[J].IEEE Access,2020,9:1958-1971.
- [16]王昕,黄柯,郑益慧,等.基于PNN/PCA/SS-SVR的光伏发电功率短期预测方法[J].电力系统自动化,2016,40(17):156-162.WANG Xin,HUANG Ke,ZHENG Yihui,et al. Shortterm forecasting method of photovoltaic output power based on PNN/PCA/SS-SVR[J].Automation of Electric Power Systems,2016,40(17):156-162.
- [17]常俊晓,金之榆,卢姬,等.基于集成聚类和XGBoost的短期光伏发电功率预测[J].浙江电力,2021,40(10):102-107.CHANG Junxiao,JIN Zhiyu,LU Ji,et al.Short-term photovoltaic power prediction based on ensemble clustering and XGBoost[J].Zhejiang Electric Power,2021,40(10):102-107.
- [18]王清亮,杨博,应欣峰,等.非晴空条件下光伏发电短期功率预测方法[J].太阳能学报,2022,43(3):188-196.WANG Qingliang,YANG Bo,YING Xinfeng,et al.Short-term photovoltaic power forecasting method under non-clear sky condition[J].Acta Energiae Solaris Sinica,2022,43(3):188-196.
- [19]唐雅洁,龚迪阳,倪筹帷,等.基于邻域前向时序最优组合的分布式光伏超短期功率预测[J].浙江电力,2021,40(10):95-101.TANG Yajie,GONG Diyang,NI Chouwei,et al. Ultra short-term distributed photovoltaic power forecasting based on neighboring optimal forward sequential combination[J].Zhejiang Electric Power,2021,40(10):95-101.
- [20]吉锌格,李慧,叶林,等.基于波动特性挖掘的短期光伏功率预测[J].太阳能学报,2022,43(5):146-155.JI Xinge,LI Hui,YE Lin,et al. Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J].Acta Energiae Solaris Sinica,2022,43(5):146-155.
- [21]丁明,虞海彪,刘练,等.基于多变量相空间重构和RBF神经网络的光伏功率预测方法[J].电子测量与仪器学报,2020,34(8):1-7.DING Ming,YU Haibiao,LIU Lian,et al.Power prediction method of photovoltaic generation based on multivariablephase space reconstruction and RBF neural network[J]. Journal of Electronic Measurement and Instrumentation,2020,34(8):1-7.
- [22]王岩韬,李景良,谷润平.基于多变量混沌时间序列的航班运行风险预测模型[J].工程科学学报,2020,42(12):1664-1673.WANG Yantao,LI Jingliang,GU Runping.Flight operation risk prediction model based on the multivariate chaotic time series[J].Chinese Journal of Engineering,2020,42(12):1664-1673.
- [23]张多.基于支持向量回归机和多变量相空间重构的短时交通流预测[D].重庆:重庆交通大学,2014.ZHANG Duo.Short-term traffic flow prediction based on SVR and multivariable phase space reconstruction[D].Chongqing:Chongqing Jiaotong University,2014.
- [24]彭春华.电力市场短期边际电价的分时重构混沌相空间预测[J].中国电机工程学报,2005,25(23):80-85.PENG Chunhua. Electricity market short-term marginal price forecasting based on period clustering restructuring chaotic phase space[J].Proceedings of the CSEE,2005,25(23):80-85.
- [25]刘智.多变量金融时间序列的相空间重构理论研究[J].中国市场,2014(43):100-101.LIU Zhi.Theoretical study on phase space reconstruction of multivariate financial time series[J].China Market,2014(43):100-101.
- [26] ZHU H W,YOU X M,LIU S.Multiple ant colony optimization based on Pearson correlation coefficient[J]. IEEE Access,2019,7:61628-61638.
- [27]严华江,章坚民,胡瑛俊,等.考虑空间相关性的分布式光伏发电出力预测及误差评价指标研究[J].浙江电力,2020,39(3):54-60.YAN Huajiang,ZHANG Jianmin,HU Yingjun,et al.Distributed photovoltaic power generation output prediction based on spatial correlation and error evaluation indexes[J].Zhejiang Electric Power,2020,39(3):54-60.
- [28]天气网.2021年6月宁波天气预报[EB/OL].(2021-07-01)[2022-07-15]. https://www. tianqi. com/tianqi/ningbo/202106.html.
- [29]侯慧,王晴,赵波,等.关键信息缺失下基于相空间重构及机器学习的电力负荷预测[J].电力系统保护与控制,2022,50(4):75-82.HOU Hui,WANG Qing,ZHAO Bo,et al. Power load forecasting without key information based on phase space reconstruction and machine learning[J]. Power System Protection and Control,2022,50(4):75-82.
- [30]朱刘柱,王绪利,马静,等.基于小波包分解与循环神经网络的综合能源系统短期负荷预测[J].电力建设,2020,41(12):131-138.ZHU Liuzhu,WANG Xuli,MA Jing,et al. Short-term load forecast of integrated energy system based on wavelet packet decomposition and recurrent neural network[J].Electric Power Construction,2020,41(12):131-138.
- 光伏功率预测
- 特征挖掘
- 多变量相空间重构
- 支持向量回归
photovoltaic power prediction - characteristics mining
- multivariable phase space reconstruction
- support vector regression