浙江电力

2023, v.42;No.322(02) 83-89

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于CNN-GAN与半监督回归的电动汽车充电负荷预测
Electric vehicle charging load forecasting based on CNN-GAN and semi-supervised regression

闫威,李南,沈月秀,施力欣,胡滨,周舟
YAN Wei,LI Nan,SHEN Yuexiu,SHI Lixin,HU Bin,ZHOU Zhou

摘要(Abstract):

随着电动汽车用户在交通用户中所占比例不断增大,其充电行为对于电力系统运行产生重要的影响,因此对电动汽车充电负荷进行准确预测具有重要意义。对此,提出了一种基于CNN-GAN(卷积神经网络-生成对抗网络)与半监督回归的充电负荷预测方法。采用GMM(高斯混合模型)对用户样本进行聚类分析,并提取典型用户行为特征。考虑历史数据及降雨量、温度等天气信息的影响,搭建各组基于CNNGAN的电动汽车负荷预测模型,并通过半监督回归得到预测结果。以华东某区域内实际电动汽车数据为例,对比多种方法的预测结果及评价指标。结果显示,CNN-GAN预测模型预测精度优于其他方法,验证了所提方法的可行性。
With the increasing proportion of electric vehicle users in transportation users, their charging behavior dramatically influences the power system operation. Therefore, it is crucial to predict the charging load of electric vehicles accurately. In this regard, a charging load prediction method is proposed based on CNN-GAN(convolutional neural network-generative adversarial network) and semi-supervised regression. A GMM(Gaussian mixture model) is used for cluster analysis of the user samples and extraction of the typical user behavior features. Given the influence of historical data and weather information such as rainfall and temperature, the EV load prediction model groups based on CNN-GAN are built, and the prediction results are obtained by semi-supervised regression. The EV data from a region of East China are used to compare the prediction results and evaluation indexes of several methods. The results show that the prediction model based on CNN-GAN is superior to other methods in prediction accuracy, and the feasibility of the proposed method is verified.

关键词(KeyWords): CNN-GAN;半监督回归;电动汽车;充电负荷预测
CNN-GAN;semi-supervised regression;electric vehicle;charging load prediction

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211JX2000K7)

作者(Author): 闫威,李南,沈月秀,施力欣,胡滨,周舟
YAN Wei,LI Nan,SHEN Yuexiu,SHI Lixin,HU Bin,ZHOU Zhou

DOI: 10.19585/j.zjdl.202302011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享