结合响应面法的变压器绕组温度快速计算方法A fast calculation method of transformer winding temperature based on response surface methodology
姜雄伟,王文浩,邵先军,郑一鸣,韩睿,刘刚
JIANG Xiongwei,WANG Wenhao,SHAO Xianjun,ZHENG Yiming,HAN Rui,LIU Gang
摘要(Abstract):
变压器数字孪生技术的实现很大程度上依赖于设备内部多物理场的快速计算。为此,采用改进的RBF(径向基函数)响应面法,建立POD(本征正交分解)模态系数关于绕组工况的响应面模型,进而结合降阶模态快速计算变压器绕组温度场。通过与全阶计算结果对比,在100个测试工况中,降阶模型的最大平均相对误差为1.91%,计算100个测试工况仅需31.26 s,效率约为12核并行全阶计算的61 266.79倍。计算结果表明,所提出的结合响应面法的POD降阶算法具有较高的计算精度和效率。
The realization of digital twinning technology for transformers largely depends on the rapid calculation of various physical fields within the equipment. Therefore, the response surface methodology based on enhanced radial basis function(RBF) is employed to construct a response surface model of the POD(proper orthogonal decomposition) modal coefficients for winding conditions and then quickly calculate the transformer winding temperature field based on reduced order mode. Upon comparison of these results with those obtained from full-order calculations, it is observed that the maximum average relative error of the reduced-order model is 1.91% across 100 test cases. Remarkably, the calculation of these 100 test cases is completed in a mere 31.26 seconds, signifying an efficiency level approximately 61,266.79 times superior to that of the 12-core parallel full-order calculation. The computational findings affirm the high computational accuracy and efficiency of the proposed POD reduced-order algorithm founded on response surface methodology.
关键词(KeyWords):
数字孪生;快速计算;响应面法;本征正交分解;降阶模态
digital twin;rapid calculation;response surface methodology;proper orthogonal decomposition;reduced-order mod
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS220005)
作者(Author):
姜雄伟,王文浩,邵先军,郑一鸣,韩睿,刘刚
JIANG Xiongwei,WANG Wenhao,SHAO Xianjun,ZHENG Yiming,HAN Rui,LIU Gang
DOI: 10.19585/j.zjdl.202312003
参考文献(References):
- [1]沈沉,曹仟妮,贾孟硕,等.电力系统数字孪生的概念、特点及应用展望[J].中国电机工程学报,2022,42(2):487-499.SHEN Chen,CAO Qianni,JIA Mengshuo,et al. Concepts,characteristics and prospects of application of digital twin in power system[J].Proceedings of the CSEE,2022,42(2):487-499.
- [2]骆小满,阮江军,邓永清,等.基于多物理场计算和模糊神经网络算法的变压器热点温度反演[J].高电压技术,2020,46(3):860-866.LUO Xiaoman,RUAN Jiangjun,DENG Yongqing,et al.Transformer hot-spot temperature inversion based on multi-physics calculation and fuzzy neural network algorithm[J]. High Voltage Engineering,2020,46(3):860-866.
- [3]杨帆,吴涛,廖瑞金,等.数字孪生在电力装备领域中的应用与实现方法[J].高电压技术,2021,47(5):1505-1521.YANG Fan,WU Tao,LIAO Ruijin,et al.Application and implementation method of digital twin in electric equipment[J].High Voltage Engineering,2021,47(5):1505-1521.
- [4]肖黎,张晶焯,陈龙,等.地铁杂散电流造成的电网变压器直流偏磁特征量分析[J].南方电网技术,2021,15(5):129-134.XIAO Li,ZHANG Jingzhuo,CHEN Long,et al.Analysis on the DC magnetic bias characteristic of transformer in power system caused by the subway stray current[J].Southern Power System Technology,2021,15(5):129-134.
- [5]岳国良,王永强,何杰,等.基于FVM的大型油浸式变压器风机控制策略研究[J].高压电器,2016,52(7):116-122.YUE Guoliang,WANG Yongqiang,HE Jie,et al. Research of strategies based on FVM for large oil-immersed power transformer’s fan control[J].High Voltage Apparatus,2016,52(7):116-122.
- [6]丁树业,郭保成,冯海军,等.变频控制下永磁同步电机温度场分析[J].中国电机工程学报,2014,34(9):1368-1375.DING Shuye,GUO Baocheng,FENG Haijun,et al.Temperature field investigation of permanent magnet synchronous motors controlled by the frequency conversion control system[J].Proceedings of the CSEE,2014,34(9):1368-1375.
- [7]纽春萍,赵鹏,吴翊,等.基于气流场分析的强迫风冷封闭母线热分析[J].高电压技术,2019,45(6):1989-1994.NIU Chunping,ZHAO Peng,WU Yi,et al. Thermal analysis of forced air-cooled enclosed bus based on computational fluid dynamics[J]. High Voltage Engineering,2019,45(6):1989-1994.
- [8]陈敬友,高兵,杨帆,等.气体绝缘输电线路温升数值计算及绝缘气体换热能力[J].高电压技术,2020,46(11):4042-4051.CHEN Jingyou,GAO Bing,YANG Fan,et al.Numerical calculation of temperature rise of gas insulated transmission lines and heat transfer capability of insulating gases[J].High Voltage Engineering,2020,46(11):4042-4051.
- [9]李立毅,黄旭珍,寇宝泉,等.基于有限元法的圆筒型直线电机温度场数值计算[J].电工技术学报,2013,28(2):132-138.LI Liyi,HUANG Xuzhen,KOU Baoquan,et al.Numerical calculation of temperature field for tubular linear motor based on finite element method[J].Transactions of China Electrotechnical Society,2013,28(2):132-138.
- [10]王劭,赵建利,白全新,等.强迫油循环风冷变压器温度场三维分布仿真计算[J].浙江电力,2021,40(10):116-122.WANG Shao,ZHAO Jianli,BAI Quanxin,et al.Simulation calculation of three-dimensional temperature field distribution of OFAF transformer[J]. Zhejiang Electric Power, 2021,40(10):116-122.
- [11]何明高,李德波,周杰联,等.220 kV变压器短路状态三维瞬态电磁场数值模拟研究[J].浙江电力,2018,37(5):27-31.HE Minggao,LI Debo,ZHOU Jielian,et al. Numerical simulation research on three-dimensional transien electromagnetic field of a 220 kV power transformer in short circuit condition[J].Zhejiang Electric Power,2018,37(5):27-31.
- [12]姚育成,蔡定国,徐业彬,等.干式变压器温度场数值模拟[J].变压器,2012,49(8):31-33.YAO Yucheng,CAI Dingguo,XU Yebin,et al.Numerical simulation of temperature field of dry-type transformer[J].Transformer,2012,49(8):31-33.
- [13] LIU G,ZHENG Z,MA X,et al. Numerical and experimental investigation of temperature distribution for oilimmersed transformer winding based on dimensionless least-squares and upwind finite element method[J].IEEE Access,2019,7:119110-119120.
- [14]陈伟根,苏小平,孙才新,等.基于有限体积法的油浸式变压器绕组温度分布计算[J].电力自动化设备,2011,31(6):23-27.CHEN Weigen,SU Xiaoping,SUN Caixin,et al. Temperature distribution calculation based on FVM for oilimmersed power transformer windings[J].Electric Power Automation Equipment,2011,31(6):23-27.
- [15]刘刚,靳艳娇,马永强,等.基于混合法的油浸式变压器二维瞬态温度场仿真[J].高压电器,2019,55(4):82-89.LIU Gang,JIN Yanjiao,MA Yongqiang,et al.2-D transient temperature field simulation of oil-immersed transformer based on hybrid method[J].High Voltage Apparatus,2019,55(4):82-89.
- [16]孙晨扬,李启良,杨志刚.最小二乘有限元法求解非定常应力的Navier-Stokes方程[J].计算物理,2015,32(1):13-19.SUN Chenyang,LI Qiliang,YANG Zhigang. Leastsquares finite element method for unsteady stress formulation of navier-stokes equations[J]. Chinese Journal of Computational Physics,2015,32(1):13-19.
- [17]中国电力企业联合会科技开发服务中心.电力行业数字孪生技术应用白皮书[R/OL].(2022-07-02)[2023-03-29]. https://www. thepaper. cn/newsDetail_forward_19289460.Science and Technology Development Service Center of China Electric Power Enterprises Federation. White paper on application of digital twin technology in electric power industry[R/OL].(2022-07-02)[2023-03-29]. https://www.thepaper.cn/newsDetail_forward_19289460.
- [18] JIANG G,KANG M,CAI Z W,et al.Online reconstruction of 3D temperature field fused with POD-based reduced order approach and sparse sensor data[J].International Journal of Thermal Sciences,2022,175:107489.
- [19] PIERQUIN A,HENNERON T. Nonlinear data-driven model order reduction applied to circuit-field magnetic problem[J]. IEEE Transactions on Magnetics,2021,57(11):1-9.
- [20]王学喜,张俊,李新明.响应面法优化超声提取锁阳多糖工艺研究[J].北方园艺,2011(6):191-195.WANG Xuexi,ZHANG Jun,LI Xinming.Optimization of the ultrasonic extraction of polysaccharides from cynomorium coccineum L. using response surface methodology[J].Northern Horticulture,2011(6):191-195.
- [21] LIU G,HOU D H,ZHAO X J,et al.Power transformer’s electrostatic ring optimization based on ANSYS parametric design language and response surface methodology[J].Applied Sciences,2019,9(20):4286.
- [22]王洋洋,宫岛,周劲松.基于自适应响应面法的动车组牵引变压器弹性吊挂设计[J].华东交通大学学报,2019,36(6):1-6.WANG Yangyang,GONG Dao,ZHOU Jinsong. Design of elastic suspension for traction transformer of EMU based on adaptive response surface method[J].Journal of East China Jiaotong University,2019,36(6):1-6.
- [23]胡常福,任伟新,刘旭政.径向基函数随机响应面法[J].土木建筑与环境工程,2014,36(2):42-47.HU Changfu,REN Weixin,LIU Xuzheng. Stochastic response surface method based on radial basis functions[J].Journal of Civil,Architectural&Environmental Engineering,2014,36(2):42-47.
- 数字孪生
- 快速计算
- 响应面法
- 本征正交分解
- 降阶模态
digital twin - rapid calculation
- response surface methodology
- proper orthogonal decomposition
- reduced-order mod