浙江电力

2020, v.39;No.294(10) 21-27

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于边缘计算和无人机巡检图像的输电杆塔关键部位隐患智能识别
Intelligent Identification of Hidden Troubles in Key Parts of Transmission Towers Based on Edge Computing and UAV Inspection Images

胡志坤,赵超越,王振东,林晨
HU Zhikun,ZHAO Chaoyue,WANG Zhendong,LIN Chen

摘要(Abstract):

目前输电杆塔的隐患识别通常采用无人机拍摄本体图像,再传输到后台进行分析。这样不利于快速定位隐患位置并及时处理。同时输电杆塔的缺陷检测和识别主要采用基于深度学习的目标检测和分类算法,计算量大,无人机终端的处理器难以达到实时检测的效果,对关键部位小微隐患的检测能力不佳。为了提升无人机在巡检过程中对输电杆塔本体小微隐患检测和分类的准确率和实时性,提出了利用FPN(特征金字塔网络)构建Faster R-CNN(区域卷积神经网络)检测模型的MGFF-KCD(关键部件检测的多粒度特征融合算法)来处理多个粒度的特征信息,提高了算法的准确率。将算法模型在无人机终端进行实时智能分析,选取销钉、绝缘子、防震锤、均压环、鸟巢五类输电杆塔关键部位进行试验,结果表明,该算法在华为Atlas 200芯片设备上可实现每张62 ms的检测速度和88%的准确率。
At present, body images of the transmission towers are taken by UAVs and then transferred to backstage for analysis, which does not favor fast location and timely treatment of hidden trouble. Moreover,object detection and classification algorithm of trouble detection and identification of transmission tower based on deep learning feature large calculation quantity and real-time detection is impossible for the processor at UAV terminal, and there is detection inefficiency of minor hidden trouble in critical parts. To improve the accuracy and real-time performance of the detection and classification of the minor potential hazards in patrol inspection of power transmission by UAV, the paper proposes MGFF-KCD(multi-granularity feature fusion algorithm for key component detection) that constructs a fast R-CNN(area convolutional neural network) detection model based on FPN(feature pyramid network) to process multi-granularity feature information to improve the accuracy of the algorithm. The real-time intelligent analysis of the algorithm model is carried out in the terminal of the UAV. The experiments are carried out in five key parts such as pin, insulator, shockproof hammer, pressure equalizer ring and bird′s nest. The result shows that the algorithm can achieve a detection speed of 62 ms per image and precision of 88% on HUAWEI Atlas 200 chip equipment.

关键词(KeyWords): 边缘计算;输电杆塔本体隐患;无人机巡检;多粒度融合算法
edge calculation;hidden trouble of transmission tower;UAV patrol;multi-granularity fusion algorithm

Abstract:

Keywords:

基金项目(Foundation): 2019年度山东省重点研发计划(重大科技创新工程)项目(2019JZZY010118)

作者(Author): 胡志坤,赵超越,王振东,林晨
HU Zhikun,ZHAO Chaoyue,WANG Zhendong,LIN Chen

DOI: 10.19585/j.zjdl.202010004

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享