浙江电力

2024, v.43;No.335(03) 95-103

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于图转换和迁移学习的低压配电网户变关系和相位识别方法
A household-transformer relationships and phase identification method of low-voltage distribution networks based on graph transformation and transfer learning

欧锋,罗醒华,龙经纬,徐超群,赖国清,杨慧敏
OU Feng,LUO Xinghua,LONG Jingwei,XU Chaoqun,LAI Guoqing,YANG Huimin

摘要(Abstract):

为进一步提高低压配电网户变关系和相位识别的准确性,提出一种基于图转换和迁移学习的低压配电网户变关系和相位识别方法。首先,引入了基于格拉姆角场的图转换方法实现用电数据的二维化,以更好地发现一维时序用电数据间的差异性;然后,针对低压配电网用户数据稀缺、获取途径有限、样本数量较少等问题,基于迁移学习利用预训练好的参数权重,构建了适合户变关系和相位识别的深度学习模型。通过实验验证,所提模型在户变关系识别和相位识别中的准确率较主流方法均有所提升,拥有更好的稳定性。
A method based on graph transformation and transfer learning is proposed to further enhance the accuracy of household-transformer relationships and phase identification in low-voltage distribution networks. Firstly, a graph transformation method based on Gramian angular field(GAF) is introduced to convert electricity consumption data into a two-dimensional representation, facilitating the identification of differences in one-dimensional time-series electricity consumption data. Next, to address challenges such as sparse user data in low-voltage distribution networks, limited data acquisition methods, and a scarcity of samples, a deep learning model suitable for householdtransformer relationship and phase identification is constructed using transfer learning and leveraging pre-trained parameter weights. Experimental validation demonstrates that the proposed model outperforms mainstream methods in both household-transformer relationship and phase identification, exhibiting improved accuracy and stability.

关键词(KeyWords): 低压配电网;户变关系和相位识别;格拉姆角和场;迁移学习;深度学习模型
low-voltage distribution networks;household-transformer relationship and phase recognition;Gramian angular summation field;transfer learning;deep learning model

Abstract:

Keywords:

基金项目(Foundation): 南方电网公司重点科技项目035300KK52190077(GDKJXM20198298)

作者(Author): 欧锋,罗醒华,龙经纬,徐超群,赖国清,杨慧敏
OU Feng,LUO Xinghua,LONG Jingwei,XU Chaoqun,LAI Guoqing,YANG Huimin

DOI: 10.19585/j.zjdl.202403011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享