基于信息-物理-社会融合系统的虚拟电厂低碳调控模型A low-carbon scheduling model for virtual power plants based on a cyber-physical-social system
张亚杰,崔威,吴凡,宋佳桐,王歌,王飞
ZHANG Yajie,CUI Wei,WU Fan,SONG Jiatong,WANG Ge,WANG Fei
摘要(Abstract):
在推动电力系统低碳转型过程中,融合信息、物理、社会等多因素对于有效管理用户侧碳资产以及实施虚拟电厂低碳调控至关重要。为此,提出一种基于信息-物理-社会融合系统的虚拟电厂低碳调控模型。首先,建立基于信息-物理-社会融合系统的虚拟电厂低碳调控框架;然后,结合动态碳排放因子与用户响应行为时序耦合特征,建立基于碳资产价格系数的用户侧碳资产开发评价体系,以获取低碳需求响应用户优选序列;最后,提出以降低虚拟电厂碳排放量为目标的优化模型,依据优选序列对虚拟电厂进行有序调控。在IEEE 33节点系统上进行算例分析,仿真结果表明:所提低碳调控方法可在最大限度遵循用户用电规律的基础上,充分开发用户侧碳资产,从而实现虚拟电厂低碳调控。
In the process of promoting the low-carbon transformation of power systems, integrating cyber, physical, and social factors is crucial for effectively managing carbon assets on the user side and implementing low-carbon scheduling in virtual power plants(VPPs). To this end, this paper proposes a low-carbon scheduling model for VPPs based on a cyber-physical-social system(CPSS). First, a low-carbon scheduling framework for VPPs is established under the CPSS. Then, considering the coupling characteristics of dynamic carbon emission factors and users' response behavior over time, a user-side carbon asset development evaluation system based on carbon asset price coefficients is built to obtain an optimized user sequence for low-carbon demand response. Finally, an optimization model is proposed with the objective of minimizing carbon emissions from VPPs, and orderly scheduling is performed based on the optimized sequence. Case analysis on the IEEE 33-node system demonstrates that the proposed low-carbon scheduling method maximizes adherence to users' electricity consumption patterns while fully exploiting user-side carbon assets, thereby achieving low-carbon scheduling for VPPs.
关键词(KeyWords):
虚拟电厂;低碳调控;用户侧碳资产开发;碳排放流理论;用户碳资产价格系数
VPP;low-carbon scheduling;user-side carbon asset development;carbon emission flow theory;users' carbon asset price coefficients
基金项目(Foundation): 国家电网有限公司科技项目(kj2023-084);; 国家重点研发计划项目(2022YFB2403000)
作者(Author):
张亚杰,崔威,吴凡,宋佳桐,王歌,王飞
ZHANG Yajie,CUI Wei,WU Fan,SONG Jiatong,WANG Ge,WANG Fei
DOI: 10.19585/j.zjdl.202504006
参考文献(References):
- [1] FAN H J,ZHEN Z,LIU N,et al.Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method[J].Energy,2023,266:126420.
- [2]张智刚,康重庆.碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报,2022,42(8):2806-2819.ZHANG Zhigang,KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE,2022,42(8):2806-2819.
- [3]黄雨涵,丁涛,李雨婷,等.碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J].中国电机工程学报,2021,41(增刊1):28-51.HUANG Yuhan,DING Tao,LI Yuting,et al.Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J].Proceedings of the CSEE,2021,41(S1):28-51.
- [4] GE X X,XU F,WANG Y X,et al.Spatio-temporal twodimensions data based customer baseline load estimation approach using LASSO regression[J].IEEE Transactions on Industry Applications,2022,58(3):3112-3122.
- [5] GU N,CUI J S,WU C Y.An auto-tuned robust dispatch strategy for virtual power plants to provide multi-stage real-time balancing service[J]. IEEE Transactions on Smart Grid,2023,14(6):4494-4507.
- [6] ZHU Z Q,CHAN K W,XIA S W,et al.Optimal bi-level bidding and dispatching strategy between active distribution network and virtual alliances using distributed robust multi-agent deep reinforcement learning[J].IEEE Transactions on Smart Grid,2022,13(4):2833-2843.
- [7] FUSCO A,GIOFFRèD,FRANCESCO CASTELLI A,et al.A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets[J].Applied Energy,2023,336:120739.
- [8]葛鑫鑫,付志扬,徐飞,等.面向新型电力系统的虚拟电厂商业模式与关键技术[J].电力系统自动化,2022,46(18):129-146.GE Xinxin,FU Zhiyang,XU Fei,et al. Business model and key technologies of virtual power plant for new power system[J].Automation of Electric Power Systems,2022,46(18):129-146.
- [9]王飞,李美颐,张旭东,等.需求响应资源潜力评估方法、应用及展望[J].电力系统自动化,2023,47(21):173-191.WANG Fei,LI Meiyi,ZHANG Xudong,et al. Assessment methods for demand response resource potential and their application and prospect[J]. Automation of Electric Power Systems,2023,47(21):173-191.
- [10] POURGHADERI N, FOTUHI-FIRUZABAD M,KABIRIFAR M,et al. Reliability-based optimal bidding strategy of a technical virtual power plant[J].IEEE Systems Journal,2022,16(1):1080-1091.
- [11] ZHOU L,SONG J,CHI Y G,et al.Differential spatiotemporal patterns of CO2 emissions in Eastern China’s urban agglomerations from NPP/VIIRS nighttime light data based on a neural network algorithm[J].Remote Sensing,2023,15(2):404.
- [12]田壁源,常喜强,张新燕,等.考虑需求响应和共享储能的配电网低碳经济调度[J].电力需求侧管理,2021,23(5):52-56.TIAN Biyuan,CHANG Xiqiang,ZHANG Xinyan,et al.Low carbon economic dispatch of distribution network considering DR and shared energy storage[J].Power Demand Side Management,2021,23(5):52-56.
- [13]吴笑民,郭雨,郑景文,等.多能互补智慧园区能源系统优化运行方法[J].高电压技术,2022,48(7):2545-2553.WU Xiaomin,GUO Yu,ZHENG Jingwen,et al.Optimal operation method for power system of multi-energy complement smart park[J]. High Voltage Engineering,2022,48(7):2545-2553.
- [14]张淑婷,陆海,林小杰,等.考虑储能的工业园区综合能源系统日前优化调度[J].高电压技术,2021,47(1):93-101.ZHANG Shuting,LU Hai,LIN Xiaojie,et al. Operation scheduling optimization of integrated-energy system in industrial park in consideration of energy storage[J]. High Voltage Engineering,2021,47(1):93-101.
- [15]刘奕辰,肖红谊,刘晓宏,等.考虑绿证交易及碳排放约束的含风光储微网低碳优化调度[J].浙江电力,2024,43(8):66-73.LIU Yichen,XIAO Hongyi,LIU Xiaohong,et al. Lowcarbon optimal scheduling for hybrid wind/PV/storage microgrids considering GEC trading and carbon emission constraints[J].Zhejiang Electric Power,2024,43(8):66-73.
- [16]顾洁,游铭豪,邬凯浪.考虑碳排放分摊的综合能源服务商交易策略[J].电力自动化设备,2024,44(5):11-18.GU Jie,YOU Minghao,WU Kailang.Trading strategy for integrated energy service provider considering carbon emission sharing[J]. Electric Power Automation Equipment,2024,44(5):11-18.
- [17]张妍,冷媛,尚楠,等.考虑碳排放需求响应及碳交易的电力系统双层优化调度[J].电力建设,2024,45(5):94-104.ZHANG Yan,LENG Yuan,SHANG Nan,et al.Bi-Level optimal scheduling of power system considering carbon demand response and carbon trading[J].Electric Power Construction,2024,45(5):94-104.
- [18]刘可真,李林耘,林铮,等.考虑碳排放流的电-气互联系统源荷互动低碳经济调度[J].电力自动化设备,2024,44(5):1-10.LIU Kezhen,LI Linyun,LIN Zheng,et al. Low-carbon economic dispatch of source-load interaction in electricitygas system considering carbon emission flow[J]. Electric Power Automation Equipment,2024,44(5):1-10.
- [19]周天睿,康重庆,徐乾耀,等.电力系统碳排放流分析理论初探[J].电力系统自动化,2012,36(7):38-43.ZHOU Tianrui,KANG Chongqing,XU Qianyao,et al.Preliminary theoretical investigation on power system carbon emission flow[J].Automation of Electric Power Systems,2012,36(7):38-43.
- [20]叶尔森·赛里克,杨希,李美颐,等.基于集成学习的负荷聚合商需求响应潜力概率预测模型[J/OL].电测与仪表,1-9(2023-02-14)[2024-06-16]. http://kns. cnki. net/kcms/detail/23.1202.TH.20230214.0955.004.html.YE ERSEN·Sai Like,YANG Xi,LI Meiyi,et al. Dayahead probabilistic forecasting of load aggregators’ DR potential based on ensemble learning[J/OL].Electrical Measurement&Instrumentation,1-9(2023-02-14)[2024-06-16]. http://kns. cnki. net/kcms/detail/23.1202. TH.20230214.0955.004.html.
- [21] LI K P,WANG Y X,ZHANG N,et al.Precision and accuracy co-optimization-based demand response baseline load estimation using bidirectional data[J].IEEE Transactions on Smart Grid,2023,14(1):266-276.
- [22]李保卫,胡泽春,宋永华,等.电力碳排放区域分摊的原则与模型[J].电网技术,2012,36(7):12-18.LI Baowei,HU Zechun,SONG Yonghua,et al.Principle and model of regional allocation of power carbon emissions[J].Power System Technology,2012,36(7):12-18.
- [23]陈丽霞,孙弢,周云,等.电力系统发电侧和负荷侧共同碳责任分摊方法[J].电力系统自动化,2018,42(19):106-111.CHEN Lixia,SUN Tao,ZHOU Yun,et al.Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems,2018,42(19):106-111.
- [24]杨柳,张超,蒋勃,等.考虑用户满意度的虚拟电厂热电联合低碳经济调度模型[J].热力发电,2019,48(9):40-45.YANG Liu,ZHANG Chao,JIANG Bo,et al.A combined low-carbon economic dispatching model for virtual power plant considering customer satisfaction index[J].Thermal Power Generation,2019,48(9):40-45.
- [25]高兵,王进,张孝跃,等.考虑碳捕集机组深度调峰的虚拟电厂低碳经济调度[J/OL].现代电力,1-8(2024-03-08)[2024-06-16]. https://doi. org/10.19725/j. cnki. 1007-2322.2023.0197.GAO Bing,WANG Jin,ZHANG Xiaoyue,et al.Low carbon economic dispatch of virtual power plants considering deep peak shaving of carbon capture units[J/OL].Modern Electric Power,1-8(2024-03-08)[2024-06-16]. https://doi.org/10.19725/j.cnki.1007-2322.2023.0197.
- [26]胥栋,李逸超,李赟,等.基于深度强化学习的多能流楼宇低碳调度方法[J].浙江电力,2024,43(2):126-136.XU Dong,LI Yichao,LI Yun,et al.A low-carbon scheduling method for multi-energy flow buildings based on deep rein-forcement learning[J].Zhejiang Electric Power,2024,43(2):126-136.
- [27] WANG F,XIANG B,LI K P,et al. Smart households’aggregated capacity forecasting for load aggregators under incentive-based demand response programs[J]. IEEE Transactions on Industry Applications,2020,56(2):1086-1097.
- 虚拟电厂
- 低碳调控
- 用户侧碳资产开发
- 碳排放流理论
- 用户碳资产价格系数
VPP - low-carbon scheduling
- user-side carbon asset development
- carbon emission flow theory
- users' carbon asset price coefficients