浙江电力

2025, v.44;No.351(07) 33-43

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于关键影响因素量化分析和HGNN的暂态稳定评估
A transient stability assessment method using quantitative analysis of key influencing factors and HGNN

杨凯璇,卢国强,傅国斌,张文朝,刘利军,李杏
YANG Kaixuan,LU Guoqiang,FU Guobin,ZHANG Wenzhao,LIU Lijun,LI Xing

摘要(Abstract):

现有暂态稳定评估研究中对关键影响因素的量化分析不足,导致评估结果的准确性受限。为此,提出基于HGNN(层次图神经网络)的电力系统暂态稳定评估方法,重点量化分析故障区域和新能源比例两个关键因素。首先,利用图理论对故障区域进行化简和分区,识别出对暂态稳定评估影响较大的关键故障区域。其次,以双馈异步风机作为典型新能源发电设备,考虑其等效特性,量化分析不同新能源比例对暂态稳定评估输入特征的影响。随后,基于HGNN模型研究关键故障区域和新能源比例对暂态稳定评估的影响。最后,在IEEE 39节点系统上进行算例分析。结果表明,HGNN模型的性能指标均优于其他传统模型,识别关键故障区域能够提升评估的准确性,而新能源比例的增加会在一定程度上降低评估的准确性。
In current research on transient stability assessment, the absence of quantitative analysis of key influencing factors hampers the accuracy of assessment results. Thus, a transient stability assessment method for power systems using hierarchical graph neural network(HGNN) is proposed, concentrating on the quantitative analysis of two crucial factors: fault area and the proportion of renewable energy. Firstly, graph theory is employed to simplify and partition the fault areas, identifying key fault areas that significantly impact transient stability assessment. Secondly, with doubly-fed asynchronous wind turbine generators as typical renew energy generation devices and considering their equivalent characteristics, the influence of different renewable energy proportions on the input features of transient stability assessment is quantitatively analyzed. Then, the impact of key fault areas and renewable energy proportion on transient stability assessment is explored using the HGNN model. Finally, a case study is carried out on the IEEE 39-bus system. The results indicate that the performance indicators of the HGNN model outperform those of traditional models. Identifying key fault areas can enhance assessment accuracy, while an increase in the proportion of renewable energy will reduce assessment accuracy to a certain degree.

关键词(KeyWords): 暂态稳定评估;HGNN;关键区域识别;特征量化
transient stability assessment;HGNN;critical region identification;feature quantification

Abstract:

Keywords:

基金项目(Foundation): 青海省重点研发与转换计划项目(2023-GX-158)

作者(Author): 杨凯璇,卢国强,傅国斌,张文朝,刘利军,李杏
YANG Kaixuan,LU Guoqiang,FU Guobin,ZHANG Wenzhao,LIU Lijun,LI Xing

DOI: 10.19585/j.zjdl.202507004

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享